随着ChatGPT推出插件和函数调用功能,构建以LLM(大语言模型)为核心控制器的AI Agent愈发成为一个拥有无限可能的概念。
AI Agent是一种超越简单文本生成的人工智能系统。它使用大型语言模型(LLM)作为其核心计算引擎,具有自主理解、感知、规划、记忆和使用工具的能力,能自动化执行复杂任务的系统,具有独立思考和行动能力的AI程序。在人工智能中,AI Agent是以智能方式决策的代理,它感知环境,自主采取行动以实现目标,并可以通过学习或获取知识来提高其性能。
AI Agent 可以被理解为一种能够感知环境、理解目标,并自主采取行动以实现目标的智能实体。它就像是一个具备高度自主性和适应性的智能助手,在大模型的强大能力支撑下,能够与复杂多变的环境进行交互,并根据所获取的信息做出决策和执行任务。
与传统的人工智能应用相比,AI Agent 不仅仅是简单地对输入信息做出响应,而是能够主动地规划一系列行动步骤,以达成特定的目的。例如,在一个智能客服场景中,AI Agent 不仅能够回答用户提出的问题,还能够根据用户的历史记录、当前需求以及对话的上下文,主动推荐相关的产品或服务,甚至在遇到复杂问题时,自行寻找解决方案或寻求其他资源的协助。
AI Agent本质上是一个构建在LLM(大模型)之上的智能应用,也就是说AI Agent是大模型的上层应用。用公式表示为:Agent = LLM(大模型) +记忆+感知与反思+规划+工具使用
由上图可见,AI Agent由记忆、规划、工具使用和行动四个主要模块组成。
记忆模块:记忆就类似于人类大脑的记忆功能,记录了智能体内部日志以及和用户交互历史,记忆又分为短期记忆和长期记忆。短期记忆,是指在执行任务的过程中的上下文,长期记忆提供保留和召回长期信息的能力,通常是一个外部的向量库。
规划模块:主要由两部分组成,其一是思维链,其二就是目标分解,为了某一目标任务而作出的决策过程。
工具使用:大模型本身只有思想,在处理不同的事情时,需要不同的工具,同样地,智能体能够利用外部资源或工具来执行任务,比如:计算器、搜索工具、代码执行器等。
行动模块:智能体实际执行决定或响应的部分。
AI Agent 在大模型中的运行机制
(一)感知与信息获取
AI Agent 首先需要具备强大的感知能力,以收集来自环境的各种信息。在大模型的背景下,这意味着它能够处理多种类型的数据,如文本、图像、音频等。通过对这些数据的解析和理解,Agent 可以构建起对当前环境的认知模型。例如,在一个智能家居系统中,AI Agent 可以通过传感器获取室内的温度、湿度、光照强度等信息,同时还能理解用户的语音指令或手机应用程序的文本输入,从而全面了解家居环境的状态以及用户的需求。
(二)目标理解与规划
一旦获取了足够的信息,AI Agent 就需要理解其被赋予的目标或任务。这要求它能够深入分析用户的意图,将模糊或复杂的指令转化为具体的、可操作的目标。然后,基于对环境的认知和目标的确定,Agent 会运用大模型所蕴含的知识和推理能力,制定出一系列达成目标的行动计划。例如,如果用户要求 AI Agent 安排一次周末旅行,Agent 会分析用户的偏好(如目的地类型、预算、出行方式等),然后规划出包括预订机票、酒店、制定旅游路线等一系列详细的步骤。
(三)行动执行与反馈调整
在制定好计划后,AI Agent 便开始执行相应的行动。它会与各种外部系统或服务进行交互,以完成预订、操作设备、生成报告等具体任务。在执行过程中,Agent 会持续监测环境的变化以及行动的效果,并根据反馈信息及时调整自己的计划和行动策略。例如,如果在预订机票时发现原定航班已满,AI Agent 会根据用户的时间灵活性和偏好,自动调整预订方案,选择其他合适的航班或出行时间。
AI Agent 的能力特点
(一)自主性
AI Agent 具有高度的自主性,能够在没有人类直接干预的情况下,独立地完成任务。它可以根据预设的目标和规则,自行决定采取何种行动以及何时采取行动。这种自主性使得 AI Agent 能够在复杂的环境中灵活应对各种情况,例如在自动驾驶汽车中,AI Agent 可以根据路况、交通信号和车辆状态自主地做出驾驶决策,确保行车安全和高效。
(二)适应性
能够适应不同的环境和任务需求是 AI Agent 的另一大显著特点。无论是处理简单的日常事务,还是应对复杂的专业领域问题,AI Agent 都可以通过学习和调整自身的行为策略来适应。例如,在医疗领域,AI Agent 可以通过学习大量的医学文献、病例数据以及临床实践经验,逐渐适应不同疾病的诊断和治疗辅助任务,为医生提供有价值的建议和决策支持。
(三)交互性
良好的交互能力是 AI Agent 与人类和其他系统有效合作的关键。它可以理解自然语言、手势、表情等多种形式的人类输入,并以清晰、易懂的方式进行回应。同时,AI Agent 还能够与其他智能设备或软件系统进行无缝对接和交互,实现信息共享和协同工作。例如,在智能家居生态系统中,AI Agent 可以与智能电视、智能音箱、智能家电等设备进行交互,根据用户的指令统一控制这些设备的运行状态,为用户创造更加便捷、舒适的家居生活体验。
AI Agent 的应用场景
(一)智能客服与客户服务
在企业的客户服务领域,AI Agent 正发挥着越来越重要的作用。它能够实时解答客户的各种问题,提供个性化的服务推荐,处理订单查询、投诉建议等事务。通过与客户的自然语言对话,AI Agent 可以快速理解客户需求,提高客户满意度和服务效率。例如,一些电商平台利用 AI Agent 为用户提供 24/7 的在线客服支持,帮助用户解决购物过程中遇到的问题,从产品咨询到售后服务,都能得到及时有效的处理。
(二)智能办公与协作
在办公场景中,AI Agent 可以协助员工完成各种任务,如文件整理、数据分析、会议安排、邮件回复等。它能够理解员工的工作需求和指令,自动执行重复性的工作,提高办公效率和质量。例如,AI Agent 可以根据员工的邮件内容自动提取关键信息,生成任务清单或提醒事项;在团队协作中,它还可以协调不同成员之间的工作进度,分配资源,促进团队的高效运作。
(三)智能家居与物联网
智能家居是 AI Agent 的一个重要应用领域。它可以将家中的各种智能设备连接成一个有机的整体,实现智能化的家居控制和管理。用户可以通过语音指令或手机应用与 AI Agent 进行交互,控制灯光、空调、窗帘、家电等设备的开关和运行状态,还可以设置个性化的家居场景模式,如 “回家模式”“睡眠模式” 等。此外,AI Agent 还能够监测家居环境的安全状况,如检测烟雾、燃气泄漏、非法入侵等,并及时发出警报或采取相应的措施。
(四)教育培训与智能辅导
在教育领域,AI Agent 可以作为智能辅导工具,为学生提供个性化的学习指导和支持。它能够根据学生的学习进度、知识掌握情况和学习风格,制定个性化的学习计划,推荐合适的学习资源,解答学习过程中遇到的问题。例如,在在线学习平台上,AI Agent 可以与学生进行互动式学习,通过对话、练习、测试等方式帮助学生巩固知识,提高学习效果。