FIRST集合、FOLLOW集合、SELECT集合以及预测分析表地构造
FIRST集合的简单理解就是推导出的字符串的开头终结符的集合。
FOLLOW集合简单的理解就对于非终结符后面接的第一个终结符。
给定一个由终结符和非终结符组成的字符串,FIRST(
FIRST(
FOLLOW(X)是可直接跟随与X之后的终结符集合。也就是说,如果存在着任一推导包含Xt,则t∈FOLLOW(X)。当推导包含XYZt,其中Y和Z都推导出时,也有t∈FOLLOW(X)
FIRST、FOLLOW和nullable的迭代计算
计算FIRST、FOLLOW和nullable的算法
将所有的FIRST喝FOLLOW初始为空集合,将所有的nullable初始为false
for 每一个终结符Z
FIRST[Z]←{Z}
repeat
for 每个产生式X→
for 每个i从1到k,每个j从i+1到k。
if 所有都可为空的
then nullable[x] ←true
if 都是可为空的
then FIRST[X] ←FIRST[x]∪FIRST[]
if 都是可为空的
then FOLLOW[] ←FOLLOW[]∪FOLLOW[X]
if 都是可为空的
then FOLLOW [] ←FOLLOW[]∪FIRST[]
until FIRST、FOLLOW和nullable在此轮迭代中没有改变
例子如下
第一轮迭代如下
构造一个预测分析器
考虑一个递归下降分析器。费终结符X的分析函数对X的每个产生式都有一个子句,因此,该函数必须根据下一个输入单词T来选择其中的一个子句。如果能够为每一个(X,T)选择出正确的产生式,我们就能够写出这个递归下降分析器。我们需要的所有信息可以用一张关于产生式的二维表来表示,此表以文法的非终结符X和终结符T作为索引。这张表称为预测分析表(predictive parsing table)。预测分析表可以由Select集合构造
Select集合:
Select集合就是产生式左部的可能的推导结果的起始符号。
Select(A–>B)就是求这个产生式中A可能推导出起始符号集合(不包含空串ε)。
求Select集合可分如下几种情况:
A–>X (X为任意文法符号串,不限于非终结符或单个符号),并且X不能推导出空串 ε
根据定义,显然A推出的符号串起始就是X的起始,也就是First(X).
Select(A–>X)= First(X)
A–>X (X为任意文法符号串,不限于非终结符或单个符号),并且X能推导出空串ε
根据定义,显然First(X)属于Select(A–>X),此外,当X推导为空串时,显然A 也推导为空串,那么此时推导出的符号串就会是A后面的符号的推导结果。也就是 Follow(A),所以,此时Follow(A)也属于Select(A–>X)。