题目描述:Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N!
在这里累乘必然涉及大整数乘一个可以用整数表示的值。
对于大数乘一个可以用整数表示的数的时候,我们往往先会用整数数组来表示大数,每个整数表示一位,然后和整数相乘,这样做比较耗时,并且比较浪费空间(整数可以表示十多位数呢,这才用了一位?),有没有更好的方法呢?答案就是,n进制。
平时我们使用的都是10进制,用整数表示一个十进制位,那么利用率很低,而这里我们使用万进制,一个整数来表示4位数字,从而提高整数的利用率。(为什么只是用万进制,而不是用亿进制呢,整数可以表示9位数的?原因是在这里还得保证每个数和10000(n最大为10000)乘不能溢出。但是如果我们使用long long 或 __int64来保存中间值则可以使用亿进制,但有一点必须注意,就是由于long long或__int64乘法比整形乘法耗时)
还有几个待解决的问题:
1. n进制的数怎么进行乘法呢?
n进制的乘法和十进制相同,用整形乘以万进制的每一位(注意:万进制的一位最大为四位数9999)
2. 万进制数怎么转化为十进制输出?
类比说明:
十进制数的阶为十,那么十进制是怎样表示数字的呢?举个例子:2345 = 2*(10^3)+3*(10^2)+4*(10^1)+5*(10^0)
二进制阶为2,如:1011B表示为十进制是多少呢?1*(2^3)+0*(2^2)+1*(2^1)+1*(2^0)= 11,即二进制数1011B即为十进制数11
万进制数阶为10000,那么万进制数23 234(中间空格隔开)表示为十进制是多少呢?23*(10000^1)+234*(10000^0)=230234
可以发现,万进制与十进制相似,表示为十进制数时,最高位不变,其余每位表示四位,不足四位的位,左边补0,即为十进制表示
上边的问题解决了,就可写代码了,AC代码如下:
#include <iostream>
#include <iomanip>
using namespace std;
//n进制
#define SCALE 10000
//n进制中每一位的数字包含十进制数的位数
#define BIT 4
//用来表示大数
unsigned int a[20000];
int solve(int n)
{
int i, j, o, p;
a[0] = 1;
p = 1;
for(i=2; i<=n; i++)
{
///
o=0;
for(j=0; j<p; j++)
{
a[j] = a[j]*i + o;
o = 0;
if(a[j]>SCALE)
{
o = a[j]/SCALE;
a[j] %= SCALE;
}
}
while(o != 0)
{
a[p++] = o % SCALE;
o /= SCALE;
}
}
return p;
}
int main()
{
int n;
while(cin>>n)
{
int p = solve(n);
cout<<a[p-1];
for(int i=p-2; i>=0; i--)
{
cout<<setw(BIT)<<setfill('0')<<a[i];
}
cout<<endl;
}
}