Awesome Computer Vision

转载 2015年07月07日 08:57:19

Table of Contents


Computer Vision

OpenCV Programming

Machine Learning



Computer Vision

Computational Photography

Machine Learning and Statistical Learning



Conference papers on the web

Survey Papers

Tutorials and talks

Computer Vision

Recent Conference Talks

3D Computer Vision

Internet Vision

Computational Photography

Learning and Vision

Object Recognition

Graphical Models

Machine Learning


Deep Learning


External Resource Links

General Purpose Computer Vision Library

Multiple-view Computer Vision

Feature Detection and Extraction

  • VLFeat
  • SIFT
    • David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
  • SIFT++
    • Stefan Leutenegger, Margarita Chli and Roland Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints", ICCV 2011
  • SURF
    • Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008
    • A. Alahi, R. Ortiz, and P. Vandergheynst, "FREAK: Fast Retina Keypoint", CVPR 2012
    • Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison, "KAZE Features", ECCV 2012
  • Local Binary Patterns

Low-level Vision

Stereo Vision
Optical Flow
Image Denoising


  • Multi-frame image super-resolution
    • Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis 2008
  • Markov Random Fields for Super-Resolution
    • W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011
  • Sparse regression and natural image prior
    • K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.
  • Single-Image Super Resolution via a Statistical Model
    • T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014
  • Sparse Coding for Super-Resolution
    • R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science - LNCS).
  • Patch-wise Sparse Recovery
    • Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing (TIP), vol. 19, issue 11, 2010.
  • Neighbor embedding
    • H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282, Washington, DC, USA, 27 June - 2 July 2004.
  • Deformable Patches
    • Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution using Deformable Patches, CVPR 2014
    • Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014
  • A+: Adjusted Anchored Neighborhood Regression
    • R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution, ACCV 2014
  • Transformed Self-Exemplars
    • Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja, Single Image Super-Resolution using Transformed Self-Exemplars, IEEE Conference on Computer Vision and Pattern Recognition, 2015
Image Deblurring

Non-blind deconvolution

Blind deconvolution

Non-uniform Deblurring

Image Completion
Image Retargeting
Alpha Matting
Image Pyramid
Edge-preserving image processing

Intrinsic Images

Contour Detection and Image Segmentation

Interactive Image Segmentation

Video Segmentation

Camera calibration

Simultaneous localization and mapping

SLAM community:
Graph Optimization:
Loop Closure:
Localization & Mapping:

Single-view Spatial Understanding

Object Detection

Nearest Neighbor Search

General purpose nearest neighbor search
Nearest Neighbor Field Estimation

Visual Tracking

Saliency Detection


Action Reconition

Egocentric cameras

Human-in-the-loop systems

Image Captioning


  • Ceres Solver - Nonlinear least-square problem and unconstrained optimization solver
  • NLopt- Nonlinear least-square problem and unconstrained optimization solver
  • OpenGM - Factor graph based discrete optimization and inference solver
  • GTSAM - Factor graph based lease-square optimization solver

Deep Learning

Machine Learning


External Dataset Link Collection

Low-level Vision

Stereo Vision
Optical Flow
Image Super-resolutions

Intrinsic Images

Material Recognition

Multi-view Reconsturction

Saliency Detection

Visual Tracking

Visual Surveillance

Saliency Detection

Change detection

Visual Recognition

Image Classification
Scene Recognition
Object Detection
Semantic labeling
Multi-view Object Detection
Fine-grained Visual Recognition
Pedestrian Detection

Action Recognition

Image Deblurring

Image Captioning

Scene Understanding

SUN RGB-D - A RGB-D Scene Understanding Benchmark Suite # NYU depth v2 - Indoor Segmentation and Support Inference from RGBD Images

Resources for students

Resource link collection




Time Management





  • 1970年01月01日 08:00

【Computer Vision】计算机视觉相关课程和书籍

Table of Contents BooksCoursesPapersSoftwareDatasetsTutorials and TalksResources for studentsBlog...
  • j_d_c
  • j_d_c
  • 2017-03-16 09:22:49
  • 1838


  • liuguanghaoputin
  • liuguanghaoputin
  • 2008-05-30 10:43:00
  • 323

深度学习与计算机视觉 看这一篇就够了

来源: 人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造...
  • u012507022
  • u012507022
  • 2016-05-18 10:14:37
  • 61730


  • lonelyrains
  • lonelyrains
  • 2015-07-03 16:05:22
  • 3095

Computer Vision & Algorithms and Applications 计算机视觉-算法与应用 - 中文 完整书签

《计算机视觉-算法与应用》(Computer Vision & Algorithms and Applications )是一本质量非常高的计算机视觉教材,为了方便使用,笔者为中文版添加了完整书签,上...
  • qq_25040013
  • qq_25040013
  • 2016-08-11 12:45:51
  • 2038

Computer Vision: Algorithms and Applications

  • 2014年03月02日 09:51
  • 22.14MB
  • 下载


//Dom初步 Simple DOM Demo This is paragraph 1.This is the document body alert("bodyNode.firstChild.nod...
  • cxzhq2002
  • cxzhq2002
  • 2006-06-27 09:49:00
  • 892

计算机视觉(Computer Vision)基本概念

1. 图像分割     从图像中将某个特定区域与其他部分进行分离并提取出来的处理就是图像分割。因为图像分割处理实际上就是区分图像中的“前景目标”和“背景”,所以通常又称之为图像的二值化处理。图像分割在...
  • MyArrow
  • MyArrow
  • 2016-05-17 10:31:52
  • 3052

Secret of blind image deblurring?

Blind deblurring from single image is a very hot research topic in the filed of low-level vision wit...
  • wakenshao
  • wakenshao
  • 2016-06-28 21:51:37
  • 807
您举报文章:Awesome Computer Vision