机器学习
Belial_2010
小硕,关注计算机视觉、机器视觉、图像处理和Photoshop算法分析,熟悉模式识别和机器学习。
展开
-
Python3.3机器学习库配置
用Python来编写机器学习方面的代码是相当简单的,因为Python下有很多关于机器学习的库。其中下面三个库numpy,scipy,matplotlib,scikit-learn是常用组合,分别是科学计算包,科学工具集,画图工具包,机器学习工具集。 numpy :主要用来做一些科学运算,主要是矩阵的运算。NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理原创 2015-04-23 10:15:26 · 1321 阅读 · 0 评论 -
经典的机器学习方面源代码库(数据挖掘,计算机视觉,模式识别,信息检索)
文章来自:http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html今天给大家介绍一下经典的开源机器学习软件:编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比ma转载 2013-05-09 10:24:41 · 2304 阅读 · 3 评论 -
机器学习最佳入门学习资料汇总
这篇文章的确很难写,因为我希望它真正地对初学者有帮助。面前放着一张空白的纸,我坐下来问自己一个难题:面对一个对机器学习领域完全陌生的初学者,我该推荐哪些最适合的库,教程,论文及书籍帮助他们入门?资源的取舍很让人纠结,我不得不努力从一个机器学习的程序员和初学者的角度去思考哪些资源才是最适合他们的。我为每种类型的资源选出了其中最佳的学习资料。如果你是一个真正的初学者,并且有兴趣开始机器转载 2014-11-11 14:56:06 · 1370 阅读 · 0 评论 -
机器学习前沿热点–Deep Learning(二)
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。 深度学习的概念由Hinton等人于2006年转载 2013-08-09 17:16:39 · 1550 阅读 · 0 评论 -
Deep Learning的基本思想和方法
实际生活中,人们为了解决一个问题,如对象的分类(对象可是是文档、图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象,如文本的处理中,常常用词集合来表示一个文档,或把文档表示在向量空间中(称为VSM模型),然后才能提出不同的分类算法来进行分类;又如在图像处理中,我们可以用像素集合来表示一个图像,后来人们提出了新的特征表示,如SIFT,这种特征在很多图像处理的应用中表现非转载 2013-08-09 17:33:35 · 1342 阅读 · 0 评论 -
机器学习前沿热点–Deep Learning(一)
引言: 神经网络(Neural Network)与支持向量机(Support Vector Machines,SVM)是统计学习的代表方法。可以认为神经网络与支持向量机都源自于感知机(Perceptron)。感知机是1958年由Rosenblatt发明的线性分类模型。感知机对线性分类有效,但现实中的分类问题通常是非线性的。 神经网络与支持向量机(包含核方法)都是非线转载 2013-08-09 17:03:49 · 1517 阅读 · 0 评论 -
数学之美--平凡而又神奇的贝叶斯方法(四)
4. 无处不在的贝叶斯 以下我们再举一些实际例子来说明贝叶斯方法被运用的普遍性,这里主要集中在机器学习方面,因为我不是学经济的,否则还可以找到一堆经济学的例子。 4.1 中文分词 贝叶斯是机器学习的核心方法之一。比如中文分词领域就用到了贝叶斯。Google 研究员吴军在《数学之美》系列中就有一篇是介绍中文分词的,这里只介绍一下核心的思想转载 2013-07-30 20:47:50 · 1344 阅读 · 0 评论 -
数学之美--平凡而又神奇的贝叶斯方法(一)
概率论只不过是把常识用数学公式表达了出来。 ——拉普拉斯 0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述转载 2013-07-30 17:18:36 · 1427 阅读 · 0 评论 -
数学之美--平凡而又神奇的贝叶斯方法(三)
3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s Razor) 实际上,模型比较就是去比较哪个模型(猜测)更可能隐藏在观察数据的背后。其基本思想前面已经用拼写纠正的例子来说明了。我们对用户实际想输入的单词的猜测就是模型,用户输错的单词就是观测数据。我们通过:转载 2013-07-30 20:23:23 · 1355 阅读 · 0 评论 -
数学之美--平凡而又神奇的贝叶斯方法(二)
这里接着前面的介绍来继续介绍贝叶斯方法。 3. 模型比较与奥卡姆剃刀 3.1 再访拼写纠正 介绍了贝叶斯拼写纠正之后,接下来的一个自然而然的问题就来了:“为什么?”为什么要用贝叶斯公式?为什么贝叶斯公式在这里可以用?我们可以很容易地领会为什么贝叶斯公式用在前面介绍的那个男生女生长裤裙子的问题里是正确的。但为什么这样? 为了回答这个问题,一个常见的思路就转载 2013-07-30 17:31:10 · 1038 阅读 · 0 评论 -
国外程序员整理的机器学习资源大全
本文由 伯乐在线 - toolate 翻译。未经许可,禁止转载!英文出处:awesome-machine-learning。欢迎加入翻译组。本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。C++计算机视觉CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库OpenCV—它提供C++, C, Python, Java 以及 MATLA转载 2015-06-25 13:33:11 · 1344 阅读 · 0 评论