题目大意:给出n条线段,判断有几个交点,因为任意两条的都是只有一个,就是说排除了共线的情况。
思路:首先进行快速排斥实验,就是其中有一条线段的x的最小值要小于另一条线段的最大值,而另一条线段的最小值要小于此线段的最大值,y值同理可得,说的形象点就是两个线段组成的矩形要相交。
然后进行跨立实验,就是叉乘是否异号。对两条线段都要进行叉乘
下面来自:常州市第一中学 林厚从的资料
用叉积去做,分两步:
第1步:快速排斥试验,如果分别以P1P2 ,P3P4为对角线做矩形,而这两个矩形不相交,则这两条线段肯定不相交,如下左图;即使两个矩形相交,这两条线段也不一定相交,如下右图,这时再用第2步判断;
表示成语句,即两个矩形相交当且仅当下列式子为真:
(max(x1,x2)≥min(x3,x4))∧ (max(x3,x4)≥min(x1,x2)) ∧(max(y1,y2)≥min(y3,y4))∧ (max(y3,y4)≥min(y1,y2))//即对每一对点来说,任一方的X(Y)的最大值都有机会大于对方的X(Y)最小值
两个矩形相交必须在两个方向上都相交,式子的前半部分判断在x方向上是否相交,后半部分判断在y方向上是否相交。
第2步:确定每条线段是否“跨立”另一条线段所在的直线。
跨立:如果点P1处于直线P3P4的一边,而P2处于该直线的另一边,则我们说线段跨立直线P3P4,如果P1或P2在直线P3P4上,也算跨立。
两条线段相交当且仅当它们能够通过第1步的快速排斥试验,并且每一条线段都跨立另一条线段所在的直线。
具体第2步的实现,只要用叉积去做就可以了,即只要判断矢量和是否在的两边相对的位置上,如果这样,则线段跨立直线P3P4。也即检查叉积(P3-P1)×(P2-P1)与(P4-P1)×(P2-P1)的符号是否相同,相同则不跨立,线段也就不相交,否则相交。
当然也有一些特殊情况需要处理,如任何一个叉积为0,则P3或P4在直线P1P2上,又因为通过了快速排斥试验,所以下图左边的情况是不可能出现的,只会出现右边的两种情况。当然,还会出现一条或两条线段的长度为0,如果两条线段的长度都是0,则只要通过快速排斥试验就能确定;如果仅有一条线段的长度为0,如的长度为0,则线段相交当且仅当叉积(P3-P1)×(P2-P1)。
program:
#include<iostream>
#include<stdio.h>
using namespace std;
int i,k,n;
int count;
struct point
{
double x,y;
};
struct segment
{
point a,b;
}s[101];
bool inte(point & a,point & b,point & c,point & d)
{ //改成引用的一个好处就是避免用指针时候的->
//.而用点号则更好看些。引用就可以用,因为当是对象了。
if(!(min(a.x,b.x)<=max(c.x,d.x)&&
min(c.x,d.x)<=max(a.x,b.x)&&
min(a.y,b.y)<=max(c.y,d.y)&&
min(c.y,d.y)<=max(a.y,b.y)
))return false;
double u,v,w,z;
u=(b.x-a.x)*(c.y-a.y)- (c.x-a.x)*(b.y-a.y) ;
v=(b.x-a.x)*(d.y-a.y)- (d.x-a.x)*(b.y-a.y) ;
w=(d.x-c.x)*(a.y-c.y)- (a.x-c.x)*(d.y-c.y) ;
z=(d.x-c.x)*(b.y-c.y)- (b.x-c.x)*(d.y-c.y) ;
return (u*v<=0.00000001&&w*z<=0.00000001);
//其实这里隐含了几点:如果都等于0的话就是说共线,但是此题应该没有这种情况
//即使有一边等于0的话也是早在排斥实验的时候被排除,因为线段没有长度,就谈不上相交了
//但是有一边相等的话还有一边的一端在另外一边的情况,所以还是要有等于号的判断
}
int main(){
int count;
while(cin>>n&&n)
{
count=0;
for(i=0;i<n;i++)
{ cin>>s[i].a.x>>s[i].a.y>>s[i].b.x>>s[i].b.y; }
for(i=0;i<n;i++)
for(k=i+1;k<n;k++)
if(inte(s[i].a,s[i].b,s[k].a,s[k].b))
count++ ;
cout<<count<<endl;
}
//system("pause");
return 0;}