01 课程安排【动手学深度学习v2】学习目标

学习规划
目标
  • 介绍深度学习经典和最新模型

    • LeNet、ResNet、LSTM、BERT

  • 机器学习基础

    • 损失函数、目标函数、过拟合、优化

  • 实践

    • 使用Pytorch实现介绍的知识点

    • 在真实数据上体验算法效果

学习内容
  • 深度学习基础

  • 卷积神经网络

  • 循环神经网络

  • 注意力机制

  • 优化算法---机器学习的基础

  • 高性能计算---怎么并行、多GPU、分布式

  • 计算机视觉--深度学习和人工智能最大的两大领域之一

  • 自然语言处理--深度学习和人工智能最大的两大领域之一

形式
  • 每次直播讲四小节、每小节讲10min算法、10min代码实现、5min问答。

  • 每月一次kaggle竞赛

你将学到什么
  • What -- 深度学习里有哪些技术

  • How -- 如何实现调参

  • Why -- 背后的原因(直觉、数学)

    适用人群:AI相关从业人员、数据科学家、工程师、研究员、学生

方法

配套资源
### 回答1: 《动手深度学习 v2》是一本介绍深度学习的教材,通过动手实践的方式帮助读者深入理解深度学习的理论和实践。这本书由李沐等人共同编写,内容包含了深度学习的基本概念、算法原理以及实际应用等方面。 这本书的优点之一是注重实践,通过大量的案例和代码实现,读者可以亲自动手搭建深度学习模型,并通过实际操作来理解算法的工作原理。此外,书中还涵盖了一些最新的深度学习技术和应用,帮助读者跟上深度学习领域的最新发展。 《动手深度学习 v2》也具有一定的难度,对于初者来说需要一定的数和编程基础才能更好地理解和实践。但是,书中的难点都有详细的解答和说明,读者可以在遇到困难时查看相关解析,提升学习效果。 总的来说,《动手深度学习 v2》是一本非常实用的深度学习教材,适合有一定基础的读者学习和实践。通过阅读这本书,读者可以系统地学习深度学习的基本概念和算法,掌握如何应用深度学习解决实际问题,进而在深度学习领域有更深入的理解和应用。 ### 回答2: 《动手深度学习 v2》pdf是一本深度学习入门的教程,适合初学习深度学习的理论和实践。这本教程由作者李沐、阿斯顿·张剑锋等人合作撰写,涵盖了深度学习的基本概念、神经网络的构建、常见深度学习模型、计算机视觉、自然语言处理等领域的应用。 这本教程的特点是注重实践,每个章节都提供了大量的代码示例和实验指导,让读者可以动手实践,巩固所知识。同时,教程还配有相应的代码库和数据集,读者可以下载使用。 教程通过讲解深度学习的基本概念和原理,帮助读者建立起对深度学习的整体认识。然后,通过实例演示和实践,教会读者如何使用深度学习框架搭建神经网络,并进行训练和优化。 另外,这本教程也介绍了一些常见的应用领域,如计算机视觉和自然语言处理。读者可以学习到如何使用深度学习来解决图像分类、目标检测、文本生成等问题。 最后,这本教程还提供了一些深度学习的进阶内容,如深度生成模型和强化学习等,供读者深入学习和拓展。 总的来说,《动手深度学习 v2》pdf是一本很好的深度学习入门教程,通过动手实践和实例演示,帮助读者快速入门和掌握深度学习的基本知识和应用技巧。对于想要学习深度学习的初者来说,是一本非常有价值的教材。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值