图神经网络(Graph Neural Networks)入门之Node Classification

又回来补DL的坑了,这次是关于一个相对较新的方向——图神经网络。之前想做melody/chord generation时听Computer Music方向的大佬Gus Xia教授随口提了一句可以用图神经网络。最近暑期跟Finance相关的研究又跟Knowledge Graph扯到一起,于是开始了解一点GNN~

为什么要在graph的基础上跑neural networks?目的其实就是为了考虑entities之间的关系。李宏毅教授(的助教)的课中举的一个很贴切的例子:给定一部悬疑片的人物信息,需要预测凶手是谁。直接考虑每个人物的信息可能无法推出凶手,于是需要考虑人物关系网中人物之间的关系(姐弟,同事,师生等)。

GNN有两种类型:①Spatial-based convolution ②Spectral-based convolution。

下面讲一下相对简单的spatial-based GNN:(图片源网页:https://www.youtube.com/watch?v=eybCCtNKwzA

这一类GNN基本思路为不断进行aggregate,最后根据task类型来readout。Aggregation是指对于每个节点,用自己以及相邻(有边连接)的节点的信息来update下一层中自己的状态。具体实现方式有很多,比如取平均值、加权和等,也可以自己用距离不超过d的其他节点(若只考虑相邻节点那么d=1),而且这个距离也可以自己定义,甚至可以对相邻节点做attention(Graph Attention Networks)。

值得注意的是,aggregation中sum的效果一般比mean pooling或max pooling好,原因是取mean或max无法分辨出一些图的差比。它们对于一些不同的图也可能算出相同的结果。比如下图底部(a)(b)(c)三种情况:

之后按照DGL库的教程做了一个简单的node classification。给定Cora数据集(一个以论文为节点,引用为边的citation网络),其中已知所有的边以及一部分(训练集中)论文的categories,要求预测其它论文(验证集和测试集)的categories。

代码如下:

import dgl
from dgl.nn import GraphConv

import torch
from torch import nn, optim
import torch.nn.functional as F

import networkx as nx
import matplotlib.pyplot as plt

from graphviz import Digraph

dataset = dgl.data.CoraGraphDataset()
g = dataset[0]  # This DGL Dataset object only contains one single graph.
# print(g.ndata['feat'].shape, torch.sum(g.ndata['feat']==0), torch.sum(g.ndata['feat']!=0))
# print(len(g.all_edges()[0]))


class GCN(nn.Module):
    def __init__(self, in_dim, hidden_dim, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GraphConv(in_dim, hidden_dim)
        self.conv2 = GraphConv(hidden_dim, num_classes)

    def forward(self, g, in_features):
        t = self.conv1(g, in_features)
        t = F.relu(t)
        t = self.conv2(g, t)
        return t


model = GCN(g.ndata['feat'].shape[1], 16, dataset.num_classes)


def train(g, model, device, lr=0.01, epochs=300):
    model = model.to(device)
    g = g.to(device)

    optimizer = optim.Adam(model.parameters(), lr=lr)
    best_val_acc = 0
    best_test_acc = 0  # corresponding to the state of best_val_acc

    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']

    criterion = nn.CrossEntropyLoss()

    for epoch in range(epochs):
        outputs = model(g, features)
        preds = outputs.argmax(dim=1)
        loss = criterion(outputs[train_mask], labels[train_mask])

        train_acc = (preds[train_mask]==labels[train_mask]).float().mean()
        val_acc = (preds[val_mask]==labels[val_mask]).float().mean()
        test_acc = (preds[test_mask]==labels[test_mask]).float().mean()

        if best_val_acc < val_acc:
            best_val_acc = val_acc
            best_test_acc = test_acc

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (epoch + 1) % 10 == 0:
            print(f'Epoch : {epoch + 1}, train loss: {loss}, valid accuracy: {val_acc}, test accuracy: {test_acc}')

    model = model.cpu()
    torch.save(model.state_dict(), 'model_state.pkl')


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train(g, model, device)
'''
G = nx.DiGraph()
labels = g.ndata['label'].numpy().tolist()

G.add_nodes_from([i for i in range(2708)])

sts = g.all_edges()[0].numpy().tolist()
eds = g.all_edges()[1].numpy().tolist()
for i in range(len(sts)):
    G.add_edge(sts[i], eds[i], weight=0.01)


plt.figure(3, figsize=(18, 18))
nx.draw(G, with_labels=False, node_color=labels, node_size=0.8)
plt.show()
plt.close()
'''

试图visualize整个citation网络但没找到合适的方法。画出来大量的节点压成一团,几乎看不清连接这些节点的边,之后找高人指点一下.......

之后还有link prediction等简单的task可以尝试,做完再更~

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《Introduction to Graph Neural Networks》是一本介绍神经网络的PDF。神经网络是一类用于处理结构数据的深度学习模型。该PDF主要介绍了神经网络的基本概念、结构和应用。 首先,PDF简要介绍了神经网络的起源和发展背景。它指出传统的神经网络模型无法有效地处理结构数据中的关系和局部信息,而神经网络的出现填补了这一空白。 接着,PDF详细解释了神经网络的基本概念。它提到神经网络通过将节点和边表示为向量,利用卷积操作来更新节点的表示,从而融合了节点的邻居信息。同时,它还介绍了神经网络在处理无向、有向和多时的不同形式和应用。 然后,PDF分析了神经网络的结构。它介绍了常见的神经网络结构,如Graph Convolutional Networks (GCN)、GraphSAGE和Graph Attention Networks (GAT)等。对于每种结构,PDF详细解释了其原理和在实践中的应用。 最后,PDF总结了神经网络的应用领域。它指出神经网络在社交网络分析、化学分子表示、推荐系统和计算机视觉等领域有广泛的应用。并且,它还提供了一些成功案例和相关论文的引用。 综上所述,《Introduction to Graph Neural Networks》这本PDF全面而详细地介绍了神经网络的基本概念、结构和应用。对于对神经网络感兴趣的读者来说,这本PDF是一份很好的入门资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值