引言:
机器学习分类下的文章以南京大学教授周志华的《机器学习》西瓜书作为理论指导,所以该分类下的文章对理论知识不在赘述,以《Python机器学习基础教程》作为实践指导,这两本书籍都是机器学习经典教程。
此类文章注重以代码实现的方式,对机器学习比较知名的工具进行学习。不是每个人都能成为理论大佬,请保持对自身能力的正确认识,来学习机器学习。
1.3 scikit-learn
scikit-learn 是一个非常流行的工具,也是最有名的 Python 机器学习库。
1.4 必要的库和工具
除了 NumPy 和 SciPy,我们还会用到 pandas 和 matplotlib。
1.7 第一个应用: 鸢尾花分类
from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
"""
step1导入数据
"""
iris = datasets.load_iris()
# 输出iris数据的键值
print("key for iris:\n", iris.keys())
# 输出前五行数据
print("data[:5] for iris:\n", iris['data'][:5])
# 输出特征描述
print("feature name:\n", iris['feature_names'])
# 输出目标值
print("target shap