【Python机器学习基础教程6】一个简单的例子和支持向量机

例子摘自李航老师的《统计学习方法》,公式参考西瓜书或者《统计学习方法》

例:

已知一个如图所示训练集,正例点是x1 = (3,3),x2 = (4,3),反例点是x3 = (1,1),试求最大间隔分离超平面。

解:

以上是直接带入公式的求解过程,如果使用python和库函数来计算模型参数,将会方便很多,因为不涉及向高维转换,所以使用线性核即可。

from sklearn.svm import SVC
import numpy as np

data = {
    "X": np.array([[3, 3], [4, 3], [1, 1]]),
    "y": np.array([1, 1, -1])
}

# 如果采用高斯核,将对结果产生影响
svc = SVC(kernel="linear")
svc.fit(X=data["X"], y=data["y"])

# 输出支持向量
print("support vector:", svc.support_vectors_)

# dual_coef_存储α
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值