题目描述:
如果对于所有 i <= j
,nums[i] <= nums[j]
,那么数组 nums
是单调递增的。 如果对于所有 i <= j
,nums[i]> = nums[j]
,那么数组 nums
是单调递减的。
当给定的数组 nums
是单调数组时返回 true
,否则返回 false
。
自己的题解思路:
给定两个标记:Icn 和 Dec,两个标记都初始化为True,Icn判定单调递增数列,如果不满足单调递增,则赋值为False,同理,Dec判定单调递减,如果不满足单调递减就赋值为False
最后Icn 和 Dec中只要有一个True,说明一定是单调数列(单调递增或单调递减),如果都是False就说明不是单调数列。
class Solution(object):
def isMonotonic(self, A):
"""
:type nums: List[int]
:rtype: bool
"""
N = len(A)
Inc , Dec = True , True
for i in range(1,N):
if A[i] > A[i-1]:
Dec = False
if A[i] < A[i-1]:
Inc = False
if not Inc and not Dec:
return False
return True
但是这个方法的执行时间和内存都不是最好的
官方题解中提出了两个方法,两次遍历和一次遍历,一次遍历的方法和我的思路一样,官方题解更清晰,而且还有动画配合讲解。
两次遍历是分别判断是否为单调递增或单调递减:
一共写了3个函数,第一个函数是用来返回调用结果,第二和第三个函数是用来判定是否单调。
isIncreasing函数中先获得数组长度用来循环,进入循环后,如果出现递减的情况则返回False,都是递增就反悔True,isDecreasing函数同理。
class Solution:
def isMonotonic(self, A):
return self.isIncreasing(A) or self.isDecreasing(A)
def isIncreasing(self, A):
N = len(A)
for i in range(N - 1):
if A[i + 1] - A[i] < 0:
return False
return True
def isDecreasing(self, A):
N = len(A)
for i in range(N - 1):
if A[i + 1] - A[i] > 0:
return False
return True
作者:负雪明烛
链接:https://leetcode.cn/problems/monotonic-array/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。