LeetCode刷题记录—单调数列.day1

题目描述:

如果对于所有 i <= jnums[i] <= nums[j],那么数组 nums 是单调递增的。 如果对于所有 i <= jnums[i]> = nums[j],那么数组 nums 是单调递减的。

当给定的数组 nums 是单调数组时返回 true,否则返回 false

自己的题解思路:

给定两个标记:Icn 和 Dec,两个标记都初始化为True,Icn判定单调递增数列,如果不满足单调递增,则赋值为False,同理,Dec判定单调递减,如果不满足单调递减就赋值为False

最后Icn 和 Dec中只要有一个True,说明一定是单调数列(单调递增或单调递减),如果都是False就说明不是单调数列。

class Solution(object):
    def isMonotonic(self, A):
        """
        :type nums: List[int]
        :rtype: bool
        """
        N = len(A)
        Inc , Dec = True , True
        for i in range(1,N):
            if A[i] > A[i-1]:
                Dec = False 
            if A[i] < A[i-1]:
                Inc = False
        if not Inc and not Dec:
            return False
        return True

但是这个方法的执行时间和内存都不是最好的

官方题解中提出了两个方法,两次遍历和一次遍历,一次遍历的方法和我的思路一样,官方题解更清晰,而且还有动画配合讲解。

两次遍历是分别判断是否为单调递增或单调递减:

一共写了3个函数,第一个函数是用来返回调用结果,第二和第三个函数是用来判定是否单调。

isIncreasing函数中先获得数组长度用来循环,进入循环后,如果出现递减的情况则返回False,都是递增就反悔True,isDecreasing函数同理。

class Solution:
    def isMonotonic(self, A):
        return self.isIncreasing(A) or self.isDecreasing(A)
        
    def isIncreasing(self, A):
        N = len(A)
        for i in range(N - 1):
            if A[i + 1] - A[i] < 0:
                return False
        return True
    
    def isDecreasing(self, A):
        N = len(A)
        for i in range(N - 1):
            if A[i + 1] - A[i] > 0:
                return False
        return True

作者:负雪明烛
链接:https://leetcode.cn/problems/monotonic-array/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值