【SCOI2005】互不侵犯

【SCOI2005】互不侵犯

【题目描述】

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

【输入】

只有一行,包含两个数N,K。

【输出】

方案数。

【输入样例】

3 2

【输出样例】

16

【数据范围】

1<=N<=9,0<=K<=N*N

【题解】

还是先DFS预处理每一行合法的放置(我还是偷懒枚举的二进制数QAQ),顺路就可以计算出这一排每种方案的放置数,然后就放心大胆的DP就好。

状态转移方程如下:

f[i][j][t]=Σf[i-1][j'][t-sum[j]]

其中f[i][j][t]表示当第i行放置方案为j,放置棋子总数为k时,放置的总方案数,最后统计f[n][i][k](i∈U)的总数就是答案。

【代码】

如果预先处理了每种方案的放置数,几乎是秒过~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值