【SCOI2005】互不侵犯 【题目描述】 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。 【输入】 只有一行,包含两个数N,K。 【输出】 方案数。 【输入样例】 3 2 【输出样例】 16 【数据范围】 1<=N<=9,0<=K<=N*N 【题解】 还是先DFS预处理每一行合法的放置(我还是偷懒枚举的二进制数QAQ),顺路就可以计算出这一排每种方案的放置数,然后就放心大胆的DP就好。 状态转移方程如下: f[i][j][t]=Σf[i-1][j'][t-sum[j]] 其中f[i][j][t]表示当第i行放置方案为j,放置棋子总数为k时,放置的总方案数,最后统计f[n][i][k](i∈U)的总数就是答案。 【代码】 如果预先处理了每种方案的放置数,几乎是秒过~ 【SCOI2005】互不侵犯#代码