区间DP问题

区间DP问题

区间DP的两种实现方式:

1.迭代式(当区间为一维时,一般选择迭代式)

2.记忆化搜索式

1、链的区间DP

当存在一条链,链上有 n n n个元素的时候,就是最为典型的迭代式区间DP问题,这里以求最小值为例

#include<bits/stdc++.h>
using namespace std;
const int N = 输入的数值;
int f[N][N];
int a[N];

int main()
{
    int n;
    cin >> n;
    for(int i = 1;i <= n;i++)
    {
        cin >> a[i];
        a[i] += a[i - 1];//利用前缀和处理元素的值
    }
    memset(f,0x3f,sizeof f);//由于要求最小值,将所有状态初始化为正无穷
    for(int len = 1;len <= n;len++)//遍历所有的区间长度
    {
        for(int i = 1;i + len - 1 <= n;i++)//遍历所有的区间
        {
            int j = i + len - 1;//i为区间的起始节点,j为区间的尾节点
            if(i == j)
                f[i][j] = 0;
            else 
            {
                for(int k = i;k < j;k++)
                    f[i][j] = max(f[i][j],f[i][k] + f[k + 1][j] + a[j] - a[i - 1];
            }
        }
    }
    
    cout << f[1][n] << endl;                              
    return 0;
}

2、环的区间DP

当存在一个有 n n n个元素的环的时候,可以将其拉伸为一个长度为 2 n 2n 2n的链,然后利用迭代式处理链的方法处理,这里以最大值为例

#include<bits/stdc++.h>
using namespace std;
const int N = 输入的值 * 2;
int a[N],w[N];
int f[N][N];

int main()
{
    int n;
    cin >> n;
    for(int i = 1;i <= n;i++)
    {
        cin >> a[i];
        a[i + n] = a[i];
    }
    for(int i = 1;i <= n * 2;i++)
        w[i] = w[i - 1] + a[i];//将环拉伸为链
    memset(f,-0x3f,sizeof f);
    for(int len = 1;len <= n;len++)
    {
        for(int i = 1;i + len - 1 <= n * 2;i++)
        {
            int j = i + len - 1;
            if(i == j)
                f[i][j] = 0;
            else 
                for(int k = i;k < j;k++)
                    f[i][j] = max(f[i][j],f[i][k] + f[k + 1][j] + w[j] - w[i - 1]);
        }
    }
    int res = -0x3f3f3f3f;
    for(int i = 1;i <= n;i++)
        res = max(res,f[i][i + n - 1]);
    cout << res << endl;
    return 0;
}

3、二维区间DP

这里以 棋盘分割为例题来讲解,这道题所运用的是记忆化搜索式的区间DP

首先是公式的推导:

σ = ∑ i = 1 n ( x i − x ˉ ) 2 n \sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n}} σ=ni=1n(xixˉ)2

= ∑ i = 1 n x i 2 − ∑ i = 1 n 2 x i x ˉ + ∑ i = 1 n x ˉ 2 n = \sqrt{\frac{\sum_{i=1}^{n}x_i^2 - \sum_{i=1}^{n}2x_i\bar{x} + \sum_{i=1}^{n}\bar{x}^2}{n}} =ni=1nxi2i=1n2xixˉ+i=1nxˉ2

= ∑ i = 1 n x i 2 − 2 n x ˉ 2 + ∑ i = 1 n x ˉ 2 n = \sqrt{\frac{\sum_{i=1}^{n}x_i^2 - 2n\bar{x}^2 + \sum_{i=1}^{n}\bar{x}^2}{n}} =ni=1nxi22nxˉ2+i=1nxˉ2

= ∑ i = 1 n x i 2 − n x ˉ 2 n = \sqrt{\frac{\sum_{i=1}^{n}x_i^2 - n\bar{x}^2}{n}} =ni=1nxi2nxˉ2

⇒ σ = ( ∑ i = 1 n x i − x ˉ ) 2 n \Rightarrow \sigma = \sqrt{\frac{(\sum_{i=1}^{n}x_i - \bar{x})^2}{n}} σ=n(i=1nxixˉ)2

代码如下:

// Problem: 棋盘分割
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/323/
// Memory Limit: 10 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define eqs 1e-6
#define all(a) a.begin(), a.end()
#define ll long long
#define ull unsigned long long
#define PII pair<int, int>
#define vint vector<int>
#define pb(a) push_back(a)
#define mod 1e9 + 7

const int N = 15, M = 10;
double f[M][M][M][M][N];
int w[M][M];
double X;
int n;

double get(int x1, int y1, int x2, int y2)
{
    double sum = w[x2][y2] - w[x1 - 1][y2] - w[x2][y1 - 1] + w[x1 - 1][y1 - 1] - X;
    return sum * sum / n;
}

double dp(int x1, int y1, int x2, int y2, int k)
{
    double &v = f[x1][y1][x2][y2][k];
    if (v >= 0)
        return v;
    if (k == 1)
        return get(x1, y1, x2, y2);
	v = inf;
    for(int i = x1;i < x2;i++)
    {
    	v = min(v,get(x1,y1,i,y2) + dp(i + 1,y1,x2,y2,k - 1));
    	v = min(v,get(i + 1,y1,x2,y2) + dp(x1,y1,i,y2,k - 1));
    }
    for(int i = y1;i < y2;i++)
    {
    	v = min(v,get(x1,y1,x2,i) + dp(x1,i + 1,x2,y2,k - 1));
    	v = min(v,get(x1,i + 1,x2,y2) + dp(x1,y1,x2,i,k - 1));
    }
    
    return v;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);

    cin >> n;
    for (int i = 1; i <= 8; i++)
        for (int j = 1; j <= 8; j++)
        {
            cin >> w[i][j];
            w[i][j] += w[i - 1][j] + w[i][j - 1] - w[i - 1][j - 1];
        }
    X = (double)w[8][8] / n;
    memset(f, -1, sizeof f);
    printf("%.3f\n",sqrt(dp(1, 1, 8, 8, n)));

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值