区间DP入门之 石子归并问题

本文介绍了石子归并问题,这是一个经典的区间动态规划(DP)问题。当有N堆石子需要合并成一堆时,每次合并相邻两堆,代价为两堆石子数量之和。目标是找到最小的合并代价。通过分析,定义dp[i][j]表示以i为起点,j为终点的合并值,并给出状态转移方程和样例输入输出,帮助理解解题思路。
摘要由CSDN通过智能技术生成

题目描述:

有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入

3
1 2 3
7
13 7 8 16 21 4 18

样例输出

9
239

题目来自:NYOJ 737

题目分析:

石子合并是经典的区间DP问题。
本题是将相邻两边进行依次合并,求最小的合并值。
dp[i][j]表示以i为起点,j为终点的合并值。
状态转移方程就是遍历寻找i与j之间一点,进行更新。

dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);

其中sum数组的值就是从i到j所有石子值之和。
开始的时候我以为dp[i][i]应该是该堆石子的值,后面发现这是不对的,应该是0,因为这一堆没有办法合并,所以最小的合并值就是0.

代码如下࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值