11 Container With Most Water的数学证明 | LeetCode

11. Container with most water

Given n non-negative integers a1, a2, …, an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49

网上给出的最优算法都比较类似,其基本想法是:将挑选的两条边分别从两端 a 0 , a n a_0, a_n a0,an开始向中间移动,每一次只能移动两条边中的一条。每次移动的标准是将较小的那条边往中间移动一格。如果移动后的面积有所增长,则将面积最大值更新。当两条边相遇时,则停止。

网上几乎都只有这个算法的描述,而没有提供一个严格的数学证明。和好友Meiyf讨论后,整理出这个算法的数学证明。


考虑分布在左右两边的移动指标 a l , a r a_l, a_r al,ar,它们分别从两端 a 0 , a n a_0, a_n a0,an开始,通过 a l a_l al右移、 a r a_r ar左移的方式,来搜索最优解。

假设最优解为 a i , a j a_i, a_j ai,aj,则我们有: 0 ≤ i &lt; j ≤ n 0 \leq i &lt; j \leq n 0i<jn。根据算法的移动方式,总是可以通过“ a l a_l al a 0 a_0 a0右移、 a r a_r ar a n a_n an左移”若干步的方式,到达 a i , a j a_i, a_j ai,aj

由于算法每一次只能移动一步(即 a l a_l al右移一步或 a r a_r ar左移一步),所以两种情况:

  • a l a_l al先到达 a i a_i ai
  • a r a_r ar先到达 a j a_j aj

必然有一种先发生。不妨假设 a l a_l al先到达 a i a_i ai(那么此时, a r a_r ar也就还未通过左移到达 a j a_j aj,它还在 a j a_j aj的右侧)。那么,我们只需证明:

在现有的算法下,后续的更新步骤__都只能是__: a r a_r ar不断左移、直到到达 a j a_j aj

我们可以通过反证法来证明上述结论。

令函数 h ( a t ) h(a_t) h(at)表示点 a t a_t at对应的线段长度,令 w ( a s , a t ) w(a_s, a_t) w(as,at)表示点 a s a_s as a t a_t at构成的线段长度。

若假设不成立,则存在某一步:在 a r a_r ar还未通过左移到达 a j a_j aj时,停留在 a i a_i ai a l a_l al需要右移一步。

下面我们来证明不可能出现上面这种情况。

若上述发生,则我们有以下结论:

  1. l = i &lt; j &lt; r l = i &lt; j &lt; r l=i<j<r
  2. h ( a i ) = h ( a l ) &lt; h ( a r ) h(a_i) = h(a_l) &lt; h(a_r) h(ai)=h(al)<h(ar)。因为根据算法,只有长度更小的那一条边才能向中间移动。所以,只有当 h ( a l ) h(a_l) h(al)小于 h ( a r ) h(a_r) h(ar)时,才可能出现 a l a_l al右移。

由此,我们可以得到由 a i , a r a_i, a_r ai,ar两条边形成的面积为: S ∗ = h ( a i ) ∗ w ( a i , a r ) . S^* = h(a_i) * w(a_i, a_r). S=h(ai)w(ai,ar).

这里的高度之所以取为 h ( a i ) h(a_i) h(ai),是因为上面第2条已经说明了 h ( a i ) h(a_i) h(ai) h ( a r ) h(a_r) h(ar)小。

而此时,因为第1条已经说明 j &lt; r j &lt; r j<r,所以 w ( a i , a r ) &gt; w ( a i , a j ) w(a_i, a_r) &gt; w(a_i, a_j) w(ai,ar)>w(ai,aj)。所以我们有:

S ∗ = h ( a i ) ∗ w ( a i , a r ) &gt; h ( a i ) ∗ w ( a i , a j ) ≥ min ⁡ { h ( a i ) , h ( a j ) } ∗ w ( a i , a j ) = S m a x S^* = h(a_i) * w(a_i, a_r) &gt; h(a_i) * w(a_i, a_j) \geq \min{\{h(a_i), h(a_j)\}} * w(a_i, a_j) = S_{max} S=h(ai)w(ai,ar)>h(ai)w(ai,aj)min{h(ai),h(aj)}w(ai,aj)=Smax

矛盾。所以假设命题不成立,进而当 a l a_l al到达 a i a_i ai后,后续的所有更新步骤都只能是 a r a_r ar不断左移、直到到达 a j a_j aj

所以,在这样的算法之下,一定能够到找到面积的最优解 S m a x S_{max} Smax

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值