1303: [CQOI2009]中位数图

Description

给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。

Input

第一行为两个正整数n和b ,第二行为1~n 的排列。

Output

输出一个整数,即中位数为b的连续子序列个数。

Sample Input

7 4
5 7 2 4 3 1 6

Sample Output

4

HINT

第三个样例解释:{4}, {7,2,4}, {5,7,2,4,3}和{5,7,2,4,3,1,6}
N<=100000

Source

思路:

定义b 数组,

就是 大于 k 的数赋值为 1, 小于 k 的数赋值为 -1。

我们把所有的数 如果大于 k 就 b[i] = b[i-1] + 1,,如果小于 k 就 b[i] = b[i-1] - 1;。

并且在 k 的位置之前,c[b[i]]++; 代表前缀出现了多少次。

eg:

实心就是 b 所在的位置,当我们枚举到了b之后,看看当前的前缀和是多少。然后找b 之前前缀和和当前的前缀和一样的。

有多少个一样的,就有多少个答案。 把所有的答案加起来。

两个前缀和一样,就保证中间的数,大于 b 的数,和小于 b 的数的个数是一样的。

有可能 b[i] 有可能是 负数,所以我们把 c 数组开成 2 倍 的 n。

c[n] 为1.  如果有前缀为 0 的话,肯定和前面的所有数一起,满足题目的条件。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+100;
int a[N];
int b[N];
int c[N*2];
int ans = 0;
int n,k;
int main(){
	scanf("%d%d",&n,&k);
	for (int i = 1; i <= n; i++) scanf("%d",&a[i]);
	c[n] = 1;
	bool ok = 0;
	for (int i = 1; i <= n; i++){
		if (a[i] > k) b[i] = b[i-1] + 1;
		if (a[i] == k) b[i] = b[i-1],ok = 1;
		if (a[i] < k) b[i] = b[i-1] - 1;
		if (ok) ans += c[b[i]+n];
		if (!ok) c[b[i] + n]++;
	}
	cout<<ans<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值