Description
给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。
Input
第一行为两个正整数n和b ,第二行为1~n 的排列。
Output
输出一个整数,即中位数为b的连续子序列个数。
Sample Input
7 4
5 7 2 4 3 1 6
Sample Output
4
HINT
第三个样例解释:{4}, {7,2,4}, {5,7,2,4,3}和{5,7,2,4,3,1,6}
N<=100000
Source
思路:
定义b 数组,
就是 大于 k 的数赋值为 1, 小于 k 的数赋值为 -1。
我们把所有的数 如果大于 k 就 b[i] = b[i-1] + 1,,如果小于 k 就 b[i] = b[i-1] - 1;。
并且在 k 的位置之前,c[b[i]]++; 代表前缀出现了多少次。
eg:
实心就是 b 所在的位置,当我们枚举到了b之后,看看当前的前缀和是多少。然后找b 之前前缀和和当前的前缀和一样的。
有多少个一样的,就有多少个答案。 把所有的答案加起来。
两个前缀和一样,就保证中间的数,大于 b 的数,和小于 b 的数的个数是一样的。
有可能 b[i] 有可能是 负数,所以我们把 c 数组开成 2 倍 的 n。
c[n] 为1. 如果有前缀为 0 的话,肯定和前面的所有数一起,满足题目的条件。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+100;
int a[N];
int b[N];
int c[N*2];
int ans = 0;
int n,k;
int main(){
scanf("%d%d",&n,&k);
for (int i = 1; i <= n; i++) scanf("%d",&a[i]);
c[n] = 1;
bool ok = 0;
for (int i = 1; i <= n; i++){
if (a[i] > k) b[i] = b[i-1] + 1;
if (a[i] == k) b[i] = b[i-1],ok = 1;
if (a[i] < k) b[i] = b[i-1] - 1;
if (ok) ans += c[b[i]+n];
if (!ok) c[b[i] + n]++;
}
cout<<ans<<endl;
return 0;
}