机器学习
文章平均质量分 94
Kilig*
这个作者很懒,什么都没留下…
展开
-
模式识别与机器学习-集成学习
并行 vs 串行:Bagging是并行的集成学习方法,而Boosting是串行的。数据处理方式:Bagging通过随机抽样构建多个模型,Boosting通过逐步迭代训练一系列弱分类器并进行加权。对模型的改进方式:Bagging减少方差,Boosting减少偏差。对异常值和噪声的敏感性:Boosting相对于Bagging更加敏感。选择Bagging还是Boosting取决于具体问题和数据集的性质。通常,对于复杂数据和模型,Boosting更有优势;原创 2023-12-30 12:59:32 · 1807 阅读 · 0 评论 -
模式识别与机器学习-概率图模型
谨以此博客作为复习期间的记录。原创 2023-12-29 16:45:03 · 1310 阅读 · 0 评论 -
模式识别与机器学习-半监督学习
谨以此博客作为复习期间的记录。原创 2023-12-29 09:27:12 · 1177 阅读 · 0 评论 -
模式识别与机器学习-无监督学习-降维
谨以此博客作为复习期间的记录。原创 2023-12-28 14:41:35 · 1922 阅读 · 0 评论 -
模式识别与机器学习-无监督学习-聚类
谨以此博客作为复习期间的记录。原创 2023-12-27 23:11:26 · 1290 阅读 · 1 评论 -
模式识别与机器学习-SVM(核方法)
谨以此博客作为复习期间的记录。原创 2023-12-27 18:13:47 · 1216 阅读 · 0 评论 -
模式识别与机器学习-SVM(带软间隔的支持向量机)
谨以此博客作为复习期间的记录。原创 2023-12-27 16:37:39 · 1309 阅读 · 0 评论 -
模式识别与机器学习-SVM(线性支持向量机)
谨以此博客作为复习期间的记录。原创 2023-12-27 15:11:45 · 919 阅读 · 0 评论 -
模式识别与机器学习-特征选择和提取
谨以此博客作为复习期间的记录。常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性能的上下限,本部分记录一下特征提取和选择部分(特征工程)可以表示为:从一个包含 n 个度量值的集合x1x2xn中,按照某个准则选择出一个子集,用作分类的特征,这个子集具有降维的效果(m 维,其中 m < n)。可以表示为:通过某种变换,将原始特征集合x1x2xn转换成一个包含 m 个新特征y1y2ym。原创 2023-12-26 15:43:14 · 830 阅读 · 1 评论 -
模式识别与机器学习-判别式分类器
谨以此博客作为学习期间的记录。原创 2023-12-26 00:00:11 · 2030 阅读 · 1 评论