tensorflow学习笔记【1】——入门 MINST

要点:
1、softmax回归——待定参数的模型


以此可以求得输入为某一个数字分别的概率。softmax函数解决的问题就是在同一尺度下,概率的归一化。


2、placeholder和variable

placeholder是给输入留的位置。

variable是要最终训练出的参数(权值)。


3、交叉熵——当前参数下模型好坏的准绳

交叉熵是我们验证训练出的模型好坏的准绳,y丿是我们已知的概率,只有一位是1,其他全零。目标就是这个值尽可能的小。


4、训练过程

训练过程,就是通过某种方法,来不断快速使交叉熵(准绳)变到最小的状态。机器学习的算法研究两个问题:

1、快速——variable太多没办法快速

2、能收敛——下次训练得到的结果如果有可能还不如上次,那就是白忙活


反向传播?梯度下降?


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值