YOLOv8目标检测图片

YOLOv8 是 YOLO(You Only Look Once)系列实时目标检测器的最新版本,由 Ultralytics 开发。它在前几代 YOLO 的基础上进行了改进,引入了新特性和优化,提升了准确性和速度。

YOLOv8是一种先进的目标检测算法,它可以实现快速和准确的目标检测。

YOLOv8 的主要特性:

  • 先进的骨干和颈部架构:改进了特征提取和目标检测性能。
  • 无锚检测头:相比基于锚点的方法,提高了准确性和效率。
  • 优化的速度和准确性:在精度和速度之间取得了平衡,适用于实时应用。
  • 多功能预训练模型:支持多种任务,如目标检测、实例分割、姿态/关键点检测、定向目标检测和分类。

支持的任务和模式:

  • 目标检测:识别和定位图像中的目标。
  • 实例分割:检测目标并划定其边界。
  • 姿态/关键点检测:识别人类姿态或关键点。
  • 定向目标检测:检测具有方向的目标。
  • 分类:将目标分类到预定义的类别中。

YOLOv8 设计为用户友好,可以在多种操作模式下使用,包括训练训练、验证、推理和导出。

文件、环境

将网盘文件里的py文件复制到ultralytics-main中,用PyCharm打开此文件

PyCharm创建conda现有环境yolo或其他自己定义的名字


链接:https://pan.baidu.com/s/1hOsv7CpIuTfU08u0ZX318w?pwd=xg43 

一、训练集

打开ultralytics-main->ultralytics->cfg->models->v8->yolov8.yaml

model中的绝对路径为yolov8.yaml文件的绝对路径

data数据集为sd.v1i.yolov8文件下的data.yaml的绝对路径

右键运行train,生成train文件

运行后的结果存放在ultralytics-main->runs->train->exp(yuan)

二、验证集

打开val.py文件,将其中model中绝对路径替换为best.pt的绝对路径

data路径跟train.py中一样

右键运行val,生成val文件

运行后结果存放在ultralytics-main->runs->val->exp中

将要进行目标检测的图片存放在test2(自己创建的文件)中,如开头的天鹅图片,命名为swan.jpg

复制其绝对路径

三、检测集

YOLO后的路径替换yolov8n.pt的路径

复制swan.jpg的绝对路径替换detect.py文件中的model路径

右键运行detect,生成detect文件

运行结果存放在ultralytics-main->runs->detect中

检测结果如下图:可以检测到图中有四只天鹅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值