YOLOv8 是 YOLO(You Only Look Once)系列实时目标检测器的最新版本,由 Ultralytics 开发。它在前几代 YOLO 的基础上进行了改进,引入了新特性和优化,提升了准确性和速度。
YOLOv8是一种先进的目标检测算法,它可以实现快速和准确的目标检测。
YOLOv8 的主要特性:
- 先进的骨干和颈部架构:改进了特征提取和目标检测性能。
- 无锚检测头:相比基于锚点的方法,提高了准确性和效率。
- 优化的速度和准确性:在精度和速度之间取得了平衡,适用于实时应用。
- 多功能预训练模型:支持多种任务,如目标检测、实例分割、姿态/关键点检测、定向目标检测和分类。
支持的任务和模式:
- 目标检测:识别和定位图像中的目标。
- 实例分割:检测目标并划定其边界。
- 姿态/关键点检测:识别人类姿态或关键点。
- 定向目标检测:检测具有方向的目标。
- 分类:将目标分类到预定义的类别中。
YOLOv8 设计为用户友好,可以在多种操作模式下使用,包括训练训练、验证、推理和导出。

文件、环境
将网盘文件里的py文件复制到ultralytics-main中,用PyCharm打开此文件
PyCharm创建conda现有环境yolo或其他自己定义的名字
链接:https://pan.baidu.com/s/1hOsv7CpIuTfU08u0ZX318w?pwd=xg43

一、训练集
打开ultralytics-main->ultralytics->cfg->models->v8->yolov8.yaml
model中的绝对路径为yolov8.yaml文件的绝对路径
data数据集为sd.v1i.yolov8文件下的data.yaml的绝对路径
右键运行train,生成train文件

运行后的结果存放在ultralytics-main->runs->train->exp(yuan)



二、验证集
打开val.py文件,将其中model中绝对路径替换为best.pt的绝对路径
data路径跟train.py中一样
右键运行val,生成val文件

运行后结果存放在ultralytics-main->runs->val->exp中


将要进行目标检测的图片存放在test2(自己创建的文件)中,如开头的天鹅图片,命名为swan.jpg
复制其绝对路径

三、检测集
YOLO后的路径替换yolov8n.pt的路径
复制swan.jpg的绝对路径替换detect.py文件中的model路径
右键运行detect,生成detect文件

运行结果存放在ultralytics-main->runs->detect中


检测结果如下图:可以检测到图中有四只天鹅
