Python实现NOA星雀优化算法优化循环神经网络LSTM分类模型项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。

1.项目背景

随着信息技术的迅猛发展,数据量呈爆炸式增长,如何从海量的数据中提取有价值的信息成为了一个重要的研究课题。特别是在时间序列预测、自然语言处理等领域,循环神经网络(RNN)及其变种如长短期记忆网络(LSTM)展现了出色的性能。然而,LSTM模型在实际应用中面临着超参数选择的问题,这直接影响了模型的泛化能力和预测精度。因此,如何有效地优化LSTM模型的超参数成为一个亟待解决的问题。

为了克服这一挑战,我们决定采用自然界启发的优化算法——NOA星雀优化算法(Nature-inspired Optimization Algorithm, NOA)。NOA是一种基于群体智能的优化方法,它模仿鸟类觅食的行为来搜索最优解。通过将NOA应用于LSTM模型的超参数优化过程,可以有效提高模型的训练效率和分类准确性。此外,相比于传统的网格搜索和随机搜索等方法,NOA能够以更低的时间成本找到更优的超参数组合,这对于提升LSTM模型的实际应用价值具有重要意义。

本项目旨在探索NOA星雀优化算法在优化LSTM模型中的应用潜力,并验证其在不同数据集上的有效性。具体来说,我们将首先构建一个基础的LSTM分类模型,然后利用NOA算法对该模型进行优化,最后通过一系列实验评估优化后的模型性能。预期结果不仅能够为相关领域的研究提供新的思路,同时也将为实际问题提供一种有效的解决方案,尤其是在需要高精度时间序列预测的应用场景中。通过本项目的实施,希望能够推动人工智能技术在更多领域的发展与应用。  

本项目通过Python实现NOA星雀优化算法优化循环神经网络LSTM分类模型项目实战。          

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:

5.3 数据样本增维

为满足LSTM建模的需要,对特征样本进行增加一个维度,增维的关键代码如下:

6.构建NOA星雀优化算法优化LSTM神经网络分类模型 

主要通过Python实现NOA星雀优化算法优化LSTM神经网络分类模型算法,用于目标分类。        

6.1 寻找最优参数值

最优参数值:   

6.2 最优参数构建模型

这里通过最优参数构建分类模型。

模型名称

模型参数

LSTM神经网络分类模型    

units=best_units

optimizer = tf.keras.optimizers.Adam(best_learning_rate) 

epochs=best_epochs

6.3 模型摘要信息

6.4 模型训练集测试集准确率和损失曲线图

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。 

模型名称

指标名称

指标值

测试集

LSTM神经网络分类模型  

准确率

0.8725

查准率

0.92

查全率

0.8131

F1分值 

0.8633

从上表可以看出,F1分值为0.8633,说明NOA星雀优化算法优化的LSTM神经网络模型效果良好。          

关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.88;分类为1的F1分值为0.86。    

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有14个样本,实际为1预测不为1的 有37个样本,模型效果良好。   

8.结论与展望

综上所述,本文采用了通过NOA星雀优化算法优化LSTM神经网络分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值