说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。
1.项目背景
随着信息技术的迅猛发展,数据量呈爆炸式增长,如何从海量的数据中提取有价值的信息成为了一个重要的研究课题。特别是在时间序列预测、自然语言处理等领域,循环神经网络(RNN)及其变种如长短期记忆网络(LSTM)展现了出色的性能。然而,LSTM模型在实际应用中面临着超参数选择的问题,这直接影响了模型的泛化能力和预测精度。因此,如何有效地优化LSTM模型的超参数成为一个亟待解决的问题。
为了克服这一挑战,我们决定采用自然界启发的优化算法——NOA星雀优化算法(Nature-inspired Optimization Algorithm, NOA)。NOA是一种基于群体智能的优化方法,它模仿鸟类觅食的行为来搜索最优解。通过将NOA应用于LSTM模型的超参数优化过程,可以有效提高模型的训练效率和分类准确性。此外,相比于传统的网格搜索和随机搜索等方法,NOA能够以更低的时间成本找到更优的超参数组合,这对于提升LSTM模型的实际应用价值具有重要意义。
本项目旨在探索NOA星雀优化算法在优化LSTM模型中的应用潜力,并验证其在不同数据集上的有效性。具体来说,我们将首先构建一个基础的LSTM分类模型,然后利用NOA算法对该模型进行优化,最后通过一系列实验评估优化后的模型性能。预期结果不仅能够为相关领域的研究提供新的思路,同时也将为实际问题提供一种有效的解决方案,尤其是在需要高精度时间序列预测的应用场景中。通过本项目的实施,希望能够推动人工智能技术在更多领域的发展与应用。
本项目通过Python实现NOA星雀优化算法优化循环神经网络LSTM分类模型项目实战。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量柱状图
用Matplotlib工具的plot()方法绘制柱状图:
4.2 y=1样本x1变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.3 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:
5.3 数据样本增维
为满足LSTM建模的需要,对特征样本进行增加一个维度,增维的关键代码如下:
6.构建NOA星雀优化算法优化LSTM神经网络分类模型
主要通过Python实现NOA星雀优化算法优化LSTM神经网络分类模型算法,用于目标分类。
6.1 寻找最优参数值
最优参数值:
6.2 最优参数构建模型
这里通过最优参数构建分类模型。
模型名称 | 模型参数 |
LSTM神经网络分类模型 | units=best_units |
optimizer = tf.keras.optimizers.Adam(best_learning_rate) | |
epochs=best_epochs |
6.3 模型摘要信息
6.4 模型训练集测试集准确率和损失曲线图
7.模型评估
7.1评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
LSTM神经网络分类模型 | 准确率 | 0.8725 |
查准率 | 0.92 | |
查全率 | 0.8131 | |
F1分值 | 0.8633 |
从上表可以看出,F1分值为0.8633,说明NOA星雀优化算法优化的LSTM神经网络模型效果良好。
关键代码如下:
7.2 分类报告
从上图可以看出,分类为0的F1分值为0.88;分类为1的F1分值为0.86。
7.3 混淆矩阵
从上图可以看出,实际为0预测不为0的 有14个样本,实际为1预测不为1的 有37个样本,模型效果良好。
8.结论与展望
综上所述,本文采用了通过NOA星雀优化算法优化LSTM神经网络分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。