603B - Moodular Arithmetic

B. Moodular Arithmetic
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers k and p, where p is an odd prime number, the functional equation states that

for some function . (This equation should hold for any integer x in the range 0 top - 1, inclusive.)

It turns out that f can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions f that satisfy this equation. Since the answer may be very large, you should print your result modulo 109 + 7.

Input

The input consists of two space-separated integers p and k (3 ≤ p ≤ 1 000 0000 ≤ k ≤ p - 1) on a single line. It is guaranteed that pis an odd prime number.

Output

Print a single integer, the number of distinct functions f modulo 109 + 7.

Sample test(s)
input
3 2
output
3
input
5 4
output
25
Note

In the first sample, p = 3 and k = 2. The following functions work:

  1. f(0) = 0f(1) = 1f(2) = 2.
  2. f(0) = 0f(1) = 2f(2) = 1.
  3. f(0) = f(1) = f(2) = 0.


当k=0时,可以推出f(0)=0 答案为pp - 1

当k=1时,可以推出f(x)=f(x) 所以可以为任何值,答案为 pp

当k>1时,把x=0代入原式可以得出f(0)=0  m为循环节。。所以答案为 


#include <bits/stdc++.h>
using namespace std;
const int MOD=1e9+7;
int cal(int p,int cnt){
    if(cnt==0) return 1;
    return (long long)p*cal(p,cnt-1)%MOD;
}

int main(){
    int p,k;
    cin>>p>>k;
    if(k==0){
        cout<<cal(p,p-1);
    }
    else if(k==1){
        cout<<cal(p,p);
    }
    else {
        int m=1;
        int w=k;
        for(;w!=1;m++){
            w=(long long)w*k%p;
        }
        cout<<cal(p,(p-1)/m);
    }
    return 0;
}





1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REaDME.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值