语音处理
文章平均质量分 69
king16304
这个作者很懒,什么都没留下…
展开
-
机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)
最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量、观察变量和实际问题中变量的对应关系,因此目前急需一个实际例子来加深对HMM算法的仰慕,大家如有好的例子来具体学HMM算法的话,欢迎分享!众所周知,著名的HMM开源库为Hidden Markov Model Toolkit(以下简称HTK转载 2016-09-13 20:47:44 · 1099 阅读 · 0 评论 -
HMM学习笔记_3(从一个实例中学习Viterbi算法)
在上一篇博客http://www.cnblogs.com/tornadomeet/archive/2012/03/24/2415583.html中,我们已经从一个例子中学会了HMM的前向算法,解决了HMM算法的第一个问题,即模型评估问题。这一讲中我们来解决第二个问题:HMM的解码问题,即即给定观测序列 O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样寻找满足这种观察序列意义上最优的隐含转载 2016-09-13 20:48:40 · 602 阅读 · 0 评论 -
HMM学习笔记_2(从一个实例中学习HMM前向算法)
HMM算法想必大家已经听说了好多次了,完全看公式一头雾水。但是HMM的基本理论其实很简单。因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察向量由一个具有相应概率密度分布的状态序列产生,又由于每一个状态也是随机分布的,所以HMM是一个双重随机过程。 HMM是语音识别,人体行为识别,文字识别等领域应用非常广泛。转载 2016-09-13 20:49:27 · 721 阅读 · 0 评论 -
HMM学习笔记_1(从一个实例中学习DTW算法)
DTW为(Dynamic Time Warping,动态时间归准)的简称。应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中。可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象。 这次主要是用语音识别课程老师上课的一个题目来理解DTW算法。 首先还是介绍下转载 2016-09-13 20:50:08 · 383 阅读 · 0 评论