给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4] 输出: true
解释: 从位置 0 到 1 跳 1 步, 然后跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4] 输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
本文提供了3种解法:1、递归回溯 2、从后往前遍历数组,如果遇到的元素可以到达最后一行,则截断后边的元素。否则继续往前,判断最后一个元素的距离3、动态规划(第1种和第3种方法会超出时间限制,故此采用第2中方法)
class Solution {
private:
bool dfs(vector<int> &nums, int index)
{
if(nums[index] + index >= nums.size()-1)
{
return true;
}
else
{
int end = index + nums[index];
for(int i = index+1; i <= end; i++)
{
if(dfs(nums, i))
{
return true;
}
}
}
return false;
}
public:
bool canJump(vector<int>& nums) {
/*
if(dfs(nums, 0))
{
return true;
}
return false;
*/
int distance = 1;
for(int i = nums.size()-2; i>= 0; i--)
{
if(nums[i] >= distance)
{
distance = 1;
}
else
{
distance++;
}
}
return (distance > 1 ? false : true);
/*vector<bool> dp(nums.size(), false);
dp[nums.size()-1] = true;
for(int i = nums.size()-2; i >= 0; i--)
{
int j = i+1;
while(j < nums.size())
{
if(dp[j] && j-i <= nums[i])
{
dp[i] = true;
break;
}
j++;
}
}
return dp[0];*/
}
};