数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000 ms Memory Limit: 65536 KiB
Submit Statistic
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Sample Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Sample Output
0 3 4 2 5 1
Hint
以邻接矩阵作为存储结构。
Source
#include<bits/stdc++.h>
using namespace std;
int gra[105][105]; //建立邻接矩阵存图
int que[200]; // 数组模拟队列
int in = 0, out = 0;// head and butt
int k, m, n;
bool visit[105]; // sign if node is visited
void bfs(int n) // bfs
{
in = 0, out = 0;
que[in++] = n; // in queue
while(in > out) // queue is not empty
{
int now = que[out];
out++;
for(int i = 0; i < k; i++)// judge if it is node
{
if(!visit[i] && gra[now][i] == 1)
{
visit[i] = true; // visited is true
que[in++] = i;// in queue
cout <<" "<<i;
}
}
}
}
int main()
{
int t;
int u, v;
cin>>t;
while(t--)
{
memset(visit,false,sizeof(visit));
memset(gra,0,sizeof(gra));
cin>>k>>m>>n;
while(m--)
{
cin>>u>>v;
gra[u][v] = gra[v][u] = 1;
}
cout << n;
visit[n] = true;// 起始节点标记为true
bfs(n);
cout << endl;
}
return 0;
}