对于\(a>b>0\),我们把\(\frac{a-b}{ln a-ln b}\)称作\(a\)与\(b\)的对数平均数,并且有:
\(算术平均数>对数平均数>几何平均数\),即:
\(\frac{a+b}{2}>\frac{a-b}{ln a-ln b}>\sqrt{ab}\)
对于\(a>b>0\),我们把\(\frac{a-b}{ln a-ln b}\)称作\(a\)与\(b\)的对数平均数,并且有:
\(算术平均数>对数平均数>几何平均数\),即:
\(\frac{a+b}{2}>\frac{a-b}{ln a-ln b}>\sqrt{ab}\)