CS231n 学习笔记(九)

时间:2019/3/31
内容:视觉之外的CNN

课时12:视觉之外的CNN

在这里插入图片描述
将每个filter(卷积核)以相同的方式滑过整个图像空间,他们具有相同的权重和参数
在这里插入图片描述
注意:

  • 卷积核的数量就是得到输出的深度
  • 上图中这些不同的卷积核作用于图像中相同的区域,而且他们有相同的参数,但他们的作用是不同的

与全连接作对比:
在这里插入图片描述
对于全连接,在激活区域或者输出中,每一个神经元都连接这平展后的所有输入,所以神经元与全体输入量都发生联系,而不是像卷积核这样,只与图像的一个局部区域发生关联

在这里插入图片描述

  • 池化层功能:让所生成的表示更小且更容易控制。为何要让所生成的表示尽量小?这是为了最后有更少的参数,也关系到给定域内的不变性问题
  • 池化层做的事情是降采样(采样点数减少)处理
  • 我们不会做深度方向的池化处理,而是只做平面上的,因此输入的深度和输出的深度一样
  • 最常见的方法是最大池化法
    在这里插入图片描述
  • 在上图中,卷积核的大小和我们要池化处理的区域大小是相同的
  • 采用与之前相同的原理划过整个输入图片,但我们不进行去数量积的运算,只提取其中的最大值
  • 对于池化层,通常会设定步长使得移动时没有重叠(原因:我们希望进行降采样处理。对于给定的一个区域避免重叠,并用一个数值来表示这个区域)
  • 最大池化比其他方式例如均值池化的优势:
    神经元的每个激活值都在一定程度上表示了在这个位置,某个神经元即某组卷积核的激发程度。可以把最大池化看成这组卷积核在图像任意区域的受激程度表示,说白了,它是最直观的。
  • 滑动步长、池化所实现的都是降采样,现实操作中,也有只用比例性地滑动步长的,但结合起来应该效果更好

经过池化后的输出:
在这里插入图片描述

  • 设置的超参数:卷积核尺寸、池化的空间范围、步长
    -比如5*5的filter,则spatial extent就是5
    一般不在池化层像之前卷积层那样padding zero,因为池化层只做降采样。这样就不会导致卷积核扫过边缘时有一部分超出了输入的范围
    池化层典型设置:
    在这里插入图片描述

在这里插入图片描述

  • 这里展示的是每层的激活映射(即输出)

  • 上图是分散池化

  • 结尾处是全连接层。将卷积网络最后一层的输出(固定尺寸的矩阵)直接拉平,得到一维输入,与朴素神经网络连接,得到卷积网络最后的全连接层。即与每一个卷积输出相连接的权重

  • 在bottom level寻找边缘或一些简单结构

  • 参考资料:

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值