引言:AI遥感为何值得尝试?
你是否曾为手动勾绘建筑物轮廓而头疼?
是否想用AI分析卫星影像却止步于复杂的代码?
QGIS+Deepness插件 给出了完美答案!无需一行代码,直接调用预训练模型,5分钟即可批量提取建筑物轮廓、道路网络,及其他地物信息!
快速提取建筑物矢量(在线高清影像)
Deepness:深度神经网络遥感分析
基于ONNX的深度神经网络模型推理(支持分割、检测与回归任务)
Deepness插件 可轻松对栅格正射影像(如卫星/航拍图)进行分割、检测与回归分析,支持自定义ONNX神经网络模型,让普通用户也能享受深度学习的强大能力。
核心功能亮点:
-
支持任意栅格图层处理(本地文件或在线图层,如Google卫星图)
-
灵活限制处理范围(按当前视图区域或矢量图层多边形范围裁剪)
-
兼容多种模型类型:分割、回归、目标检测
-
与图层系统无缝集成(输入数据与输出结果均以图层形式展示,输出图层可手动保存为文件)
-
模型库持续更新中(预置模型示例:Bing航拍图中的飞机检测、玉米田损毁评估、储油罐检测、车辆检测等)
-
训练数据导出工具:将栅格影像与掩膜分割为小尺寸瓦片
-
高级参数配置(空间分辨率、重叠区域、后处理优化)
快速提取道路矢量(在线高清影像)
下面就一起来测试一下deepness插件的厉害吧!将通过图文概要与详细视频的方式做介绍。
推荐学习:
ArcGIS Pro上线!终于和大家见面了······
01 工具准备:3步搞定环境配置
1、安装QGIS:全球第一的开源GIS软件(附软件下载)
2、安装Deepness插件
-
-
QGIS菜单栏:
插件
→管理并安装插件
→ 搜索“Deepness” → 安装 -
注意:首次启动会提示安装Python依赖包(点击确认自动完成)
-
-
3、获取预训练模型
https://qgis-plugin-deepness.readthedocs.io/en/latest/main/main_model_zoo.html#recognition-models
下载的两个训练模型:
02 实战步骤:5分钟提取建筑物与道路
Step 1:加载在线卫星影像
-
QGIS中加载高清在线影像也可以使用自己的本地实体影像。
-
我这次使用的ESRI的在线影像,使用HCMGIS插件调用。
-
定位目标区域(支持全球范围高清影像,分辨率按需缩放)
-
Step 2:导入ONNX模型
-
打开Deepness插件面板 → 点击 “Model” → 选择下载好的
.onnx
模型文件 -
关键设置:
-
输入图层:当前卫星影像
-
输出类型:建筑物或选 Segmentation,
-
Step 3:设置处理范围与参数
-
范围限制:勾选
Use visible extent
(仅处理当前视图区域) -
分辨率:建议与模型匹配(如256x256像素,分辨率40cm/px)
-
重叠区域:设为20%避免边缘切割(提升连续性)
-
Step 4:一键运行AI推理
-
点击 “Run” → 等待进度条完成(处理速度取决于影像大小)
-
-
-
-
输出结果自动以 新图层 形式加载(建筑物为掩膜,道路为矢量框)。调整参数,比如resolution等以获得更好的结果。
-
Step 5:矢量后处理与导出
-
使用QGIS内置工具:
-
建筑物掩膜 →
栅格转矢量
→ 生成多边形 -
道路检测框 →
简化几何
→ 平滑边缘
-
-
导出为Shapefile/GeoJSON:右键图层 →
导出
→ 选择格式
详细解说见下文视频介绍。
03 视频解说
零代码玩转AI遥感!QGIS+Deepness快速提取建筑物与道路矢量(深度神经网络遥感分析)
上线中,……