推导傅里叶级数,傅里叶变换,引入复数的意义,底层理解

傅里叶变换

一、三角函数的正交性

三角函数的正交性指在某个区间上,不同频率的三角函数是正交的,即不同频率的三角函数之间的内积为零。

在本文中我们只需要知道:任意两个不同的三角函数在 [ − π , + π ] [-\pi,+\pi] [π,+π]上是正交的,内积是0。

正交性,我们似乎只在线性代数这门课程中见的最多,可以描述两个向量的内积是0,即空间中两个向量是垂直的,但问题出现了,向量的内积我们好理解,也熟悉,那函数的内积是什么呢?

复习一下向量内积的定义:
[ a b c ] . [ x y z ] = a x + b y + c z \begin{bmatrix} a\\ b\\ c\\ \end{bmatrix}.\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=ax+by+cz abc . xyz =ax+by+cz
两个的向量内积就是两个向量对应元素的乘积累加。

两个函数的内积?

可以把函数也当做一个"向量","向量"的每一个元素,就是函数的每一个点,内积就是两个函数对应点相乘再相加,但函数的点连续的,无穷的,进而累加就变成积分的形式。
函数内积 : f ( x ) 与 g ( x ) 内积 = ∫ − ∞ + ∞ f ( x ) g ( x ) d x 函数内积: f(x)与g(x)内积=\int_{-\infty}^{+\infty}f(x)g(x)dx 函数内积:f(x)g(x)内积=+f(x)g(x)dx
关于三角函数的正交性,具体来讲:
∫ − π + π sin ⁡ ( n x ) cos ⁡ ( m x ) d x = 0 ∫ − π + π sin ⁡ ( n x ) sin ⁡ ( m x ) d x = 0 n ≠ m ∫ − π + π cos ⁡ ( n x ) cos ⁡ ( m x ) d x = 0 n ≠ m \begin{gather} \int_{-\pi}^{+\pi}\sin (nx)\cos (mx)dx=0\\ \int_{-\pi}^{+\pi}\sin (nx)\sin (mx)dx=0\quad n\neq m\\ \int_{-\pi}^{+\pi}\cos (nx)\cos (mx)dx=0\quad n\neq m \end{gather} π+πsin(nx)cos(mx)dx=0π+πsin(nx)sin(mx)dx=0n=mπ+πcos(nx)cos(mx)dx=0n=m
因为积分号里面是不同的三角函数,所以积分必定为0,证明也很简单(直接计算)。

二、周期为 2 π 2\pi 2π的函数的傅里叶级数

对于傅里叶级数的形式,很熟悉,下面我们推导其系数。

( 注意:许多教材中的形式是 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_ncosnx+b_nsinnx) f(x)=2a0+n=1(ancosnx+bnsinnx),其实这个 a 0 2 \frac{a_0}{2} 2a0之所以要除以2,其实是为了形式的统一而改出来的,下面将有所提及。)

f ( x ) = ∑ n = 0 ∞ ( a n c o s n x + b n s i n n x ) f ( x ) = ( a 0 c o s 0 + b 0 s i n 0 ) + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f ( x ) = a 0 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) \begin{gather} f(x)=\sum\limits_{n=0}^{\infty}(a_ncosnx+b_nsinnx)\\ f(x)=(a_0cos0+b_0sin0)+\sum\limits_{n=1}^{\infty}(a_ncosnx+b_nsinnx)\\ f(x)=a_0+\sum\limits_{n=1}^{\infty}(a_ncosnx+b_nsinnx)\\ \end{gather} f(x)=n=0(ancosnx+bnsinnx)f(x)=(a0cos0+b0sin0)+n=1(ancosnx+bnsinnx)f(x)=a0+n=1(ancosnx+bnsinnx)

a 0 = a 0 2 a_0=\frac{a_0}{2} a0=2a0,然后求 a n a_n an,求 b n b_n bn
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_ncosnx+b_nsinnx) f(x)=2a0+n=1(ancosnx+bnsinnx)

a n a_n an,函数式两边同乘一个余弦函数 cos ⁡ ( n x ) \cos (nx) cos(nx) ( 因为三角函数正交性,只有 cos ⁡ ( n x ) \cos (nx) cos(nx)能把 a n a_n an保留下来,如果乘上其余的三角函数,积分后均为 0 0 0 ),求积分,
∫ − π + π f ( x ) cos ⁡ n x d x = ∫ − π + π a 0 2 cos ⁡ n x d x + a n ∫ − π + π cos ⁡ n x cos ⁡ n x d x + b n ∫ − π + π sin ⁡ n x cos ⁡ n x d x \int_{-\pi}^{+\pi}f(x)\cos nx{\rm d}x=\int_{-\pi}^{+\pi}\frac{a_0}{2}\cos nx{\rm d}x+a_n\int_{-\pi}^{+\pi}\cos nx\cos nx{\rm d}x+b_n\int_{-\pi}^{+\pi}\sin nx\cos nx{\rm d}x\\ π+πf(x)cosnxdx=π+π2a0cosnxdx+anπ+πcosnxcosnxdx+bnπ+πsinnxcosnxdx
利用三角函数正交性
∫ − π + π f ( x ) cos ⁡ n x d x = 0 + a n ∫ − π + π cos ⁡ 2 n x d x = a n × π + 0 a n = 1 π ∫ − π + π f ( x ) cos ⁡ n x d x \begin{gather} \int_{-\pi}^{+\pi}f(x)\cos nx{\rm d}x=0+a_n\int_{-\pi}^{+\pi}\cos^2nx{\rm d}x=a_n\times\pi+0\\ a_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(x)\cos nx{\rm d}x \end{gather} π+πf(x)cosnxdx=0+anπ+πcos2nxdx=an×π+0an=π1π+πf(x)cosnxdx

a 0 2 \frac{a_0}{2} 2a0也是一样的道理,对 f ( x ) f(x) f(x)直接在一个周期内求积分,,也可以理解为同乘了个 cos ⁡ ( 0 n ) \cos (0n) cos(0n)
∫ − π + π f ( x ) d x = 2 π × a 0 2 + 0 + 0 a 0 = 1 π ∫ − π + π f ( x ) d x \begin{gather} \int_{-\pi}^{+\pi}f(x){\rm d}x=2\pi\times\frac{a_0}{2}+0+0\\ a_0=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(x){\rm d}x\\ \end{gather} π+πf(x)dx=2π×2a0+0+0a0=π1π+πf(x)dx

a 0 a_0 a0的形式与 a n a_n an相同,求 b n b_n bn,同理可得
b n = 1 π ∫ − π + π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(x)\sin nx{\rm d}x bn=π1π+πf(x)sinnxdx

总的来说,关于周期为2 π \pi π的函数,其傅里叶级数为( a 0 2 \frac{a_0}{2} 2a0的形式使得 a n a_n an的求解统一):
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) a n = 1 π ∫ − π + π f ( x ) cos ⁡ n x d x b n = 1 π ∫ − π + π f ( x ) sin ⁡ n x d x \begin{gather} f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_ncosnx+b_nsinnx)\\ a_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(x)\cos nx{\rm d}x\\ b_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(x)\sin nx{\rm d}x \end{gather} f(x)=2a0+n=1(ancosnx+bnsinnx)an=π1π+πf(x)cosnxdxbn=π1π+πf(x)sinnxdx

理解周期为 2 π 2\pi 2π的函数的傅里叶级数

傅里叶级数,直到傅里叶变换,其本身的意义是不可以忽略的。

在这个最原始的式子 f ( x ) = ∑ n = 0 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\sum\limits_{n=0}^{\infty}(a_ncosnx+b_nsinnx) f(x)=n=0(ancosnx+bnsinnx)中,我们可以看到, f ( x ) f(x) f(x)被分解成了若干个不同频率的三角函数 F n F_n Fn之和,即 F n = a n c o s n x + b n s i n n x F_n=a_ncosnx+b_nsinnx Fn=ancosnx+bnsinnx f ( x ) = ∑ n = 0 ∞ F n ( x ) f(x)=\sum\limits_{n=0}^{\infty}F_n(x) f(x)=n=0Fn(x)。如果我们把 x x x理解为时间,那么就是把一个关于时间的周期函数 f ( x ) f(x) f(x),分解为若干个关于时间的三角函数 F n F_n Fn的和, F n F_n Fn的区别就是其频率不同,为 n n n,这是一件很神奇的事情,先说到这里为止,我们接着往下看。

三、扩展到周期为2L的函数的傅里叶级数

上面论述的是关于周期为2 π \pi π的函数的傅里叶级数,有周期为 2 π 2\pi 2π的限制,对于其他的周期函数,扩展一下。

设函数 f ( x ) f(x) f(x),其周期为 T = 2 L T=2L T=2L,对 f ( x ) f(x) f(x)进行伸缩,可以将其周期化为 2 π 2\pi 2π,从而利用第二小节的结论。

t = π L x t=\frac{\pi}{L}x t=Lπx,则 x = L π t x=\frac{L}{\pi}t x=πLt,那么 f ( x ) = f ( L π t ) f(x)=f(\frac{L}{\pi}t) f(x)=f(πLt),对于这个函数 f ( L π t ) f(\frac{L}{\pi}t) f(πLt),它的周期正是 2 π 2\pi 2π

那么我们令 f ( L π t ) = g ( t ) f(\frac{L}{\pi}t)=g(t) f(πLt)=g(t),从而方便我们理解,即我们得到了一个函数 g ( t ) g(t) g(t),其周期为 2 π 2\pi 2π,然后套用第二小节的结论,可以得到 g ( t ) g(t) g(t)的傅里叶级数。
g ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n t + b n sin ⁡ n t ) a 0 = 1 π ∫ − π + π g ( t ) d t a n = 1 π ∫ − π + π g ( t ) cos ⁡ n t d t b n = 1 π ∫ − π + π g ( t ) sin ⁡ n t d t \begin{gather} g(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nt+b_n\sin nt)\\ a_0=\frac{1}{\pi}\int_{-\pi}^{+\pi}g(t){\rm d}t\\ a_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}g(t)\cos nt{\rm d}t\\ b_n=\frac{1}{\pi}\int_{-\pi}^{+\pi}g(t)\sin nt{\rm d}t \end{gather} g(t)=2a0+n=1(ancosnt+bnsinnt)a0=π1π+πg(t)dtan=π1π+πg(t)cosntdtbn=π1π+πg(t)sinntdt
经过换元,把 x x x f f f换回去,就得到 f ( x ) f(x) f(x)的傅里叶级数了(注意定积分换元必换限)。
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π L x + b n sin ⁡ n π L x ) a 0 = 1 L ∫ − L + L f ( π L x ) d x a n = 1 L ∫ − L + L f ( π L x ) cos ⁡ n π L x d x b n = 1 L ∫ − L + L f ( π L x ) sin ⁡ n π L x d x \begin{gather} f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos n\frac{\pi}{L}x+b_n\sin n\frac{\pi}{L}x)\\ a_0=\frac{1}{L}\int_{-L}^{+L}f(\frac{\pi}{L}x){\rm d}x\\ a_n=\frac{1}{L}\int_{-L}^{+L}f(\frac{\pi}{L}x)\cos n\frac{\pi}{L}x{\rm d}x\\ b_n=\frac{1}{L}\int_{-L}^{+L}f(\frac{\pi}{L}x)\sin n\frac{\pi}{L}x{\rm d}x \end{gather} f(x)=2a0+n=1(ancosnLπx+bnsinnLπx)a0=L1L+Lf(Lπx)dxan=L1L+Lf(Lπx)cosnLπxdxbn=L1L+Lf(Lπx)sinnLπxdx

到这一步呢,形式仍然比较复杂,下面将其化简,得到其一般形式。

四、傅里叶级数的一般形式

w 0 = 2 π T w_0=\frac{2\pi}{T} w0=T2π,进行简单的变量替换( T T T表周期,替换 2 L 2L 2L,再带入 w 0 w_0 w0),可以得到:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n w o x + b n sin ⁡ n w 0 x ) a n = 2 T ∫ − T 2 + T 2 f ( x ) cos ⁡ n w 0 x d x b n = 2 T ∫ − T 2 + T 2 f ( x ) sin ⁡ n w 0 x d x \begin{gather} f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nw_ox+b_n\sin nw_0x)\\ a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)\cos nw_0x{\rm d}x\\ b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)\sin nw_0x{\rm d}x \end{gather} f(x)=2a0+n=1(ancosnwox+bnsinnw0x)an=T22T+2Tf(x)cosnw0xdxbn=T22T+2Tf(x)sinnw0xdx

理解傅里叶级数的一般形式

到这里,傅里叶级数的形式变得十分简洁,理解一下其含义。

我们通过傅里叶级数,将 f ( x ) f(x) f(x)展开为若干个三角函数之和,这若干个三角函数,就分别是 F n ( x ) = a n cos ⁡ n w o x + b n sin ⁡ n w 0 x F_n(x)=a_n\cos nw_ox+b_n\sin nw_0x Fn(x)=ancosnwox+bnsinnw0x,即 f ( x ) = ∑ n = 0 ∞ F n ( x ) f(x)=\sum\limits_{n=0}^{\infty}F_n(x) f(x)=n=0Fn(x)

我们看这若干个三角函数 F n F_n Fn,其区别首先是 a n a_n an b n b_n bn不同,导致 F n F_n Fn振幅与相位的区别,但更为重要的区别是,每个三角函数 F n F_n Fn的频率的不同,这是划分 F n F_n Fn的主要标志,同时很容易看出,相邻的 F n F_n Fn F n + 1 F_{n+1} Fn+1之间,相差的频率就是 w 0 w_0 w0,画一条 w w w的数轴的话,其实就是每间隔 w 0 w_0 w0,取一个频率,以这个频率构造一个三角函数。

从下面这张图看的话,左边的轴可以理解为时域,右边的轴就是频域了,每间隔一个 w 0 w_0 w0,构造一个频率为 n w 0 nw_0 nw0的三角函数,振幅和相位由 a n a_n an b n b_n bn决定。

img

五、级数中引入复数表示

在傅里叶级数和傅里叶变换中,复数(复平面)的引入应该有深刻的道理,不过我们最能体会到的是复数让表达更加瞬间简洁,由欧拉公式 e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i \sin x eix=cosx+isinx简单变换。
e i x = cos ⁡ x + i sin ⁡ x cos ⁡ θ = e i θ + e − i θ 2 sin ⁡ θ = e i θ − e − i θ 2 i = i e − i θ − e i θ 2 \begin{gather} e^{ix}=\cos x+i \sin x\\ \cos \theta=\frac{e^{i\theta}+e^{-i\theta}}{2}\\ \sin \theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}=i\frac{e^{-i\theta}-e^{i\theta}}{2}\\ \end{gather} eix=cosx+isinxcosθ=2eiθ+eiθsinθ=2ieiθeiθ=i2eiθeiθ
则傅里叶级数可以表示为
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n e i θ + e − i θ 2 + b n i e − i θ − e i θ 2 ) θ = n w 0 x \begin{gather} f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\frac{e^{i\theta}+e^{-i\theta}}{2}+b_ni\frac{e^{-i\theta}-e^{i\theta}}{2})\quad \theta=nw_0x\\ \end{gather} f(x)=2a0+n=1(an2eiθ+eiθ+bni2eiθeiθ)θ=nw0x
下面对这个式子进行化简,将带有 e i θ e^{i\theta} eiθ e i θ e^{i\theta} eiθ的部分进行提项
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n − b n i 2 e i θ + a n + b n i 2 e − i θ ) θ = n w 0 x \begin{gather} f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(\frac{a_n-b_ni}{2}e^{i\theta}+\frac{a_n+b_ni}{2}e^{-i\theta})\quad \theta=nw_0x\\ \end{gather} f(x)=2a0+n=1(2anbnieiθ+2an+bnieiθ)θ=nw0x

关注括号右边的部分,拿出来看,进行换元,令n=-n,同时利用a_n,b_n关于n的函数性质,进行下面的变换
括号内右边部分 = ∑ n = 1 ∞ ( a n + b n i 2 e − i θ ) = ∑ n = 1 ∞ ( a n + b n i 2 e − i n w 0 x ) 括号内右边部分 = ∑ n = 1 ∞ ( a n + b n i 2 e − i n w 0 x ) = ∑ n = − ∞ − 1 ( a − n + b − n i 2 e i n w 0 x ) 注意 a n , b n 关于 n 的函数性质,是偶函数和奇函数,把负号提出来 括号内右边部分 = ∑ n = − ∞ − 1 ( a − n + b − n i 2 e i n w 0 x ) = ∑ n = − ∞ − 1 ( a n − b n i 2 e i n w 0 x ) \begin{gather} 括号内右边部分=\sum\limits_{n=1}^{\infty}(\frac{a_n+b_ni}{2}e^{-i\theta})=\sum\limits_{n=1}^{\infty}(\frac{a_n+b_ni}{2}e^{-inw_0x})\\ 括号内右边部分=\sum\limits_{n=1}^{\infty}(\frac{a_n+b_ni}{2}e^{-inw_0x})=\sum\limits_{n=-\infty}^{-1}(\frac{a_{-n}+b_{-n}i}{2}e^{inw_0x})\\ 注意a_n,b_n关于n的函数性质,是偶函数和奇函数,把负号提出来\\ 括号内右边部分=\sum\limits_{n=-\infty}^{-1}(\frac{a_{-n}+b_{-n}i}{2}e^{inw_0x})=\sum\limits_{n=-\infty}^{-1}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x}) \end{gather} 括号内右边部分=n=1(2an+bnieiθ)=n=1(2an+bnieinw0x)括号内右边部分=n=1(2an+bnieinw0x)=n=1(2an+bnieinw0x)注意an,bn关于n的函数性质,是偶函数和奇函数,把负号提出来括号内右边部分=n=1(2an+bnieinw0x)=n=1(2anbnieinw0x)

其实上面的变换,就是主要就是把求和号内式子的形式统一,代回去则有
则 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n − b n i 2 e i n w 0 x ) + ∑ n = − ∞ − 1 ( a n − b n i 2 e i n w 0 x ) b 0 = 0 , 则 a 0 可以凑成更统一的形式 f ( x ) = a 0 − b 0 i 2 + ∑ n = 1 ∞ ( a n − b n i 2 e i n w 0 x ) + ∑ n = − ∞ − 1 ( a n − b n i 2 e i n w 0 x ) f ( x ) = ∑ n = − ∞ + ∞ ( a n − b n i 2 e i n w 0 x ) \begin{gather} 则f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x})+\sum\limits_{n=-\infty}^{-1}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x})\\ b_0=0,则a_0可以凑成更统一的形式\\ f(x)=\frac{a_0-b_0i}{2}+\sum\limits_{n=1}^{\infty}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x})+\sum\limits_{n=-\infty}^{-1}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x})\\ f(x)=\sum\limits_{n=-\infty}^{+\infty}(\frac{a_{n}-b_{n}i}{2}e^{inw_0x}) \end{gather} f(x)=2a0+n=1(2anbnieinw0x)+n=1(2anbnieinw0x)b0=0,a0可以凑成更统一的形式f(x)=2a0b0i+n=1(2anbnieinw0x)+n=1(2anbnieinw0x)f(x)=n=+(2anbnieinw0x)

令$c_n=\frac{a_{n}-b_{n}i}{2}\$,则有
f ( x ) = ∑ n = − ∞ + ∞ ( c n e i n w 0 x ) c n = a n − b n i 2 f(x)=\sum\limits_{n=-\infty}^{+\infty}(c_ne^{inw_0x})\quad c_n=\frac{a_{n}-b_{n}i}{2} f(x)=n=+(cneinw0x)cn=2anbni
c n c_n cn就是 a n a_n an b n b_n bn的组合,很好求,同时把欧拉公式代入,会得到非常简洁的结果
c n = a n − b n i 2 c n = 1 T ∫ − T 2 + T 2 f ( x ) ( cos ⁡ n w 0 x − i sin ⁡ n w 0 x ) d x c n = 1 T ∫ − T 2 + T 2 f ( x ) [ cos ⁡ ( − n w 0 x ) + i sin ⁡ ( − n w 0 x ) ] d x c n = 1 T ∫ − T 2 + T 2 f ( x ) e − i n w 0 x d x \begin{gather} c_n=\frac{a_{n}-b_{n}i}{2}\\ c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)(\cos nw_0x-i\sin nw_0x){\rm d}x\\ c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)[\cos (-nw_0x)+i\sin (-nw_0x)]{\rm d}x\\ c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-inw_0x}{\rm d}x\\ \end{gather} cn=2anbnicn=T12T+2Tf(x)(cosnw0xisinnw0x)dxcn=T12T+2Tf(x)[cos(nw0x)+isin(nw0x)]dxcn=T12T+2Tf(x)einw0xdx
至此,对于一个没有复变基础的人来说,令人头疼的复数的来龙去脉,总算是搞清楚了
f ( x ) = ∑ n = − ∞ + ∞ c n e i n w 0 x c n = 1 T ∫ − T 2 + T 2 f ( x ) e − i n w 0 x d x \begin{gather} f(x)=\sum\limits_{n=-\infty}^{+\infty}c_ne^{inw_0x}\\ c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-inw_0x}{\rm d}x\\ \end{gather} f(x)=n=+cneinw0xcn=T12T+2Tf(x)einw0xdx

深入理解级数的复数形式

上述式子中带来了几个很重要的问题:

  • 负频率:如果直接看最终的公式,不可避免会产生一个疑问,负频率的意义是什么?

    不过由一步步推导而来,负频率的问题不难解决,实际上是在变化时凑出来的一个形式罢了,只是为了形式的统一。

  • c n c_n cn的意义: c n c_n cn的意义现在比较好理解,其实就是 c n = a n − b n i 2 c_n=\frac{a_{n}-b_{n}i}{2} cn=2anbni,仔细来说,它蕴含了频率为 n w 0 nw_0 nw0的三角函数 F n ′ = c n e i n w 0 x F_n^{'}=c_ne^{inw_0x} Fn=cneinw0x的振幅与相位(注:在有些视频中,说这个复数 c n c_n cn的实部是 f n f_n fn的振幅和相位,我个人认为是不对的),这离不开 e i n w 0 x e^{inw_0x} einw0x下面会有验证。

  • e i n w 0 x e^{inw_0x} einw0x的意义:我的老师提供了一个比较独特的角度,我将尽可能复述他的观点。

    e i n w 0 x = cos ⁡ ( n w 0 x ) + i sin ⁡ ( n w 0 x ) e^{inw_0x}=\cos (nw_0x)+i \sin(nw_0x) einw0x=cos(nw0x)+isin(nw0x),它像一个超空间里的基底,若干个 c n c_n cn组合在一起,就像是一个向量,我们把这个向量记为 C C C,那么 F n = c n e i n w 0 x F_n=c_ne^{inw_0x} Fn=cneinw0x就是 C C C与第 n n n个基底 e i n w 0 x e^{inw_0x} einw0x的内积,向量与基底的内积,很明显,就是向量在这个基底上的投影。这个投影就是 F n F_n Fn,是一个频率为 n w 0 nw_0 nw0的三角函数。

  • 但是! F n ′ F_n^{'} Fn与之前的 F n F_n Fn意义相同吗?

    显而易见的是,他们都表示一个频率为 n w 0 nw_0 nw0的三角函数,把他们化为三角函数式
    F n ′ = c n e i n w 0 x = a n − b n i 2 × [ cos ⁡ ( n w 0 x ) + i sin ⁡ ( n w 0 x ) ] = a n cos ⁡ n w o x + b n sin ⁡ n w 0 x 2 ( 注意复数部分抵消 ) 然而: F n = a n cos ⁡ n w o x + b n sin ⁡ n w 0 x \begin{gather} F_n^{'}=c_ne^{inw_0x}=\frac{a_{n}-b_{n}i}{2}\times[\cos (nw_0x)+i \sin(nw_0x)]\\ =\frac{a_n\cos nw_ox+b_n\sin nw_0x}{2}\quad (注意复数部分抵消)\\ 然而:F_n=a_n\cos nw_ox+b_n\sin nw_0x \end{gather} Fn=cneinw0x=2anbni×[cos(nw0x)+isin(nw0x)]=2ancosnwox+bnsinnw0x(注意复数部分抵消)然而:Fn=ancosnwox+bnsinnw0x
    很明显 F n ′ = F n 2 F_n^{'}=\frac{F_n}{2} Fn=2Fn,那化为复数形式之后, F n F_n Fn的另一半消失了?

    别忘了,我们还有负频率那部分呢,简单计算可得
    F − n ′ = a n cos ⁡ n w o x + b n sin ⁡ n w 0 x 2 F_{-n}^{'}=\frac{a_n\cos nw_ox+b_n\sin nw_0x}{2} Fn=2ancosnwox+bnsinnw0x
    也就是说 F n ′ + F − n ′ = F n F_n^{'}+F_{-n}^{'}=F_n Fn+Fn=Fn,复数以及负频率,使形式上更加方便了。

    通过上述计算,容易得知," c n c_n cn的实部是三角函数的振幅,虚部是其相位"的说法,显然是不对的。

六、形式上推导傅里叶变换

周期函数可以求级数,那非周期呢,我们就可以将其看成周期无穷大的函数
f ( x ) = ∑ n = − ∞ + ∞ ( 1 T ∫ − T 2 + T 2 f ( x ) e − i n w 0 x d x e i n w 0 x ) \begin{gather} f(x)=\sum\limits_{n=-\infty}^{+\infty}(\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-inw_0x}{\rm d}xe^{inw_0x})\\ \end{gather} f(x)=n=+(T12T+2Tf(x)einw0xdxeinw0x)
假设目前T还是一个确定的数,不是无限的,引入一个 2 π T = w = ( n + 1 ) w − n w = w n + 1 − w n \frac{2\pi}{T}=w=(n+1)w-nw=w_{n+1}-w_{n} T2π=w=(n+1)wnw=wn+1wn

1 T = w n + 1 − w n 2 π \frac{1}{T}=\frac{w_{n+1}-w_{n}}{2\pi} T1=2πwn+1wn
f ( x ) = ∑ n = − ∞ + ∞ [ 1 T ( ∫ − T 2 + T 2 f ( x ) e − i n w 0 x d x ) e i n w 0 x ] = ∑ n = − ∞ + ∞ [ w n + 1 − w n 2 π ( ∫ − T 2 + T 2 f ( x ) e − i n w 0 x d x ) e i n w 0 x ] f(x)=\sum\limits_{n=-\infty}^{+\infty}[\frac{1}{T}(\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-inw_0x}{\rm d}x)e^{inw_0x}]=\sum\limits_{n=-\infty}^{+\infty}[\frac{w_{n+1}-w_{n}}{2\pi}(\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-inw_0x}{\rm d}x)e^{inw_0x}]\\ f(x)=n=+[T1(2T+2Tf(x)einw0xdx)einw0x]=n=+[2πwn+1wn(2T+2Tf(x)einw0xdx)einw0x]
关注这时的求和号,我们出现了黎曼和(虽然不是闭区间上的),我们把 n n n换成 i i i,把所有的 n w 0 nw_0 nw0换成 w n w_n wn,可能就更好理解了(更接近黎曼和的定义)
f ( x ) = 1 2 π ∑ i = − ∞ + ∞ [ ( ∫ − T 2 + T 2 f ( x ) e − i w i x d x ) e i w i x ( w i + 1 − w i ) ] f(x)=\frac{1}{2\pi}\sum\limits_{i=-\infty}^{+\infty}[(\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-iw_ix}{\rm d}x)e^{iw_ix}(w_{i+1}-w_{i})]\\ f(x)=2π1i=+[(2T+2Tf(x)eiwixdx)eiwix(wi+1wi)]
可以与黎曼积分的定义相对比,这时的意义已经很明显了,把 ( ∫ − T 2 + T 2 f ( x ) e − i w i x d x ) e i w i x (\int_{-\frac{T}{2}}^{+\frac{T}{2}}f(x)e^{-iw_ix}{\rm d}x)e^{iw_ix} (2T+2Tf(x)eiwixdx)eiwix看做一个关于 w i w_i wi的函数 G ( w i ) G(w_i) G(wi),那么这整个式子是不是就成了
f ( x ) = 1 2 π ∑ i = − ∞ + ∞ [ G ( w i ) ( w i + 1 − w i ) ] f ( x ) = 1 2 π ∑ i = − ∞ + ∞ G ( w i ) Δ w i \begin{gather} f(x)=\frac{1}{2\pi}\sum\limits_{i=-\infty}^{+\infty}[G(w_i)(w_{i+1}-w_{i})]\\ f(x)=\frac{1}{2\pi}\sum\limits_{i=-\infty}^{+\infty}G(w_i)\Delta w_i\\ \end{gather} f(x)=2π1i=+[G(wi)(wi+1wi)]f(x)=2π1i=+G(wi)Δwi
如果把 G G G看做矩形的高, w i + 1 − w i w_{i+1}-w_i wi+1wi就是矩形的底边长,相乘就是矩形的面积,也就是说求和号里面每一项都是一个以三角 Δ w i = w 0 \Delta w_i=w_0 Δwi=w0为底的矩形面积(其实这在黎曼和,黎曼积分里有介绍,是现代定积分的定义)。当 T T T趋近于无穷时, w i w_i wi之间的相隔距离趋近于0, w i w_i wi就不是一个离散的值了,而是连续的值 w w w,这时,根据黎曼积分的知识,可以得到
f ( x ) = 1 2 π ∫ − ∞ + ∞ ( ∫ − ∞ + ∞ f ( x ) e − i w x d x ) e i w x d w f(x)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}(\int_{-\infty}^{+\infty}f(x)e^{-iwx}{\rm d}x)e^{iwx}{\rm d}w\\ f(x)=2π1+(+f(x)eiwxdx)eiwxdw
把这个式子进行简单的变形就可以得到
f ( x ) = 1 2 π ∫ − ∞ + ∞ ( 1 2 π ∫ − ∞ + ∞ f ( x ) e − i w x d x ) e i w x d w f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-iwx}{\rm d}x)e^{iwx}{\rm d}w\\ f(x)=2π 1+(2π 1+f(x)eiwxdx)eiwxdw

把括号里面的函数记为 F ( w ) F(w) F(w)
F ( w ) = 1 2 π ∫ − ∞ + ∞ f ( x ) e − i w x d x 傅里叶变换 f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( w ) e i w x d w 傅里叶逆变换 \begin{gather} F(w)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-iwx}{\rm d}x\quad傅里叶变换 \\ f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}F(w)e^{iwx}{\rm d}w\quad傅里叶逆变换\\ \end{gather} F(w)=2π 1+f(x)eiwxdx傅里叶变换f(x)=2π 1+F(w)eiwxdw傅里叶逆变换
img

对傅里叶变换的理解

有了之前对级数的理解,对傅里叶变换的理解完全不成问题,笔者再啰嗦几句

f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( w ) e i w x d w f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}F(w)e^{iwx}{\rm d}w f(x)=2π 1+F(w)eiwxdw 就相当于 f ( x ) f(x) f(x)的傅里叶级数.只不过此时周期为 ∞ \infty ,离散的累加和变成了连续的积分; c n c_n cn变成了 F ( w ) F(w) F(w),离散的 c n c_n cn变成了连续的 F ( w ) F(w) F(w)

F ( w ) = 1 2 π ∫ − ∞ + ∞ f ( x ) e − i w x d x F(w)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-iwx}{\rm d}x F(w)=2π 1+f(x)eiwxdx 意义就与 c n c_n cn类似了。

关于两者系数 1 2 π \frac{1}{\sqrt{2\pi}} 2π 1,有着不同的分配方式;比如让 f ( x ) f(x) f(x)系数为 1 2 π \frac{1}{2\pi} 2π1 F ( w ) F(w) F(w)系数为 1 1 1,只有乘积为 1 2 π \frac{1}{2\pi} 2π1,就没问题,但本文中的傅里叶变换定义方式,具有很重要的特性—保角性和保范性,就不深入说明了。

另外,很多图片中,如图二中,画出了频域上的大小,这个大小应该是 ∣ F ( w ) ∣ |F(w)| F(w),而非 F ( w ) F(w) F(w),毕竟 F ( w ) F(w) F(w)是个复数。

至此,我所理解的傅里叶变换的全部内容已经全部奉上,希望能够帮助大家理解,水平不足,恳请指正,共同进步。

下一步我将针对关于卷积,离散傅里叶变换以及快速傅里叶变换的知识进行整理。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熊熊想读研究生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值