众数问题(分治法)
问题描述:给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数,多重集合S中重数最大的元素称为众数。例如,S={1, 2 ,2 ,2 ,3 ,5}。多重集合S的众数是2,其重数为3。算法设计:对于给定的由n个自然数组成的多重集合S,计算S的众数及其重数。数据输入:输入多重集S。数据输出:输出众数及重数。
例:输入: 6 1 2 2 2 3 5 2 3
输出: 2 4
package 众数问题;
import java.util.Scanner;
public class mode {
public static void main(String[] args) {
// TODO Auto-generated method stub
int n,i;//数组元素个数
myMode m=new myMode();
Scanner reader=new Scanner(System.in);
System.out.print("请输入数组元素个数:");
n=reader.nextInt();
int[] array=new int[n];
m.number=new int[n];
System.out.println("请输入数组元素:");
for(i=0;i<n;++i){
array[i]=reader.nextInt();
}
System.out.println("");
m.Mode(array,0,n);
System.out.println("当前有"+(m.t+1)+"个众数");
for(i=m.t;i>=0;i--){
System.out.println(m.number[i]+" "+m.sum);
}
}
}
class myMode {
public int sum=0;//当前最高重复次数
public int []number;//众数数组
public int t=0;//当前众数数组元素个数-1
public int Partition(int []a,int left,int right){//划分函数,以a[left]为主元,将数组划分为比a[left]小和比a[left]大的两部分
int i=left,j=right;
int temp;
do{
do{
i++;
if(i>=right) break;//防止数组a只有一个元素时可能会发生循环判断条件的错误
}while(a[i]<a[left]);
do j--; while(a[j]>a[left]);
if(i<j){
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}while(i<j);
temp=a[j];
a[j]=a[left];
a[left]=temp;
return j;
}
public int Count(int []a,int x,int left,int right){//统计从a[left]到a[right-1]中x出现的次数
int count=0;
for(int i=left;i<right;i++){
if(a[i]==x)
count++;
}
return count;
}
public void Mode(int a[],int left,int right){
if(left<right){
int q=Partition(a, left, right);//获得划分后的主元
int times=Count(a, a[q], left, right);//统计该主元出现的次数
if(sum<times){//如果此前记录的重数比本次统计的出现次数小,则众数变为当前主元,众数个数变为1
t=0;
sum=times;
number[t]=a[q];
}else if(sum==times){//如果此前记录的重数与本次记录的频数相等,则众数数组+1
number[++t]=a[q];
}
Mode(a, left, q-1);
Mode(a, q+1, right);
}
}
}<span id="_xhe_cursor"></span>