【研究总结】基于出租车GPS轨迹数据的相关研究

本文回顾了出租车数据的常规研究,如运营特征分析和地图匹配算法,并介绍了可视化研究的最新进展,同时探讨了如何利用出租车数据进行广告牌选址、评估医疗服务分布、分析居民就医行为等创新应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出租车纯粹研究出现貌似已经过时了,在常规研究的时代结束之前,让我们来回顾和展望一下
一、常规研究
1.一般从出租车的运营特征(车、载客、行程、空载率)和出行空间特征(OD点线)两个方面来研究居民的出行规律

2.数据精度分析、预处理

(1)GPS设备故障

(2)城市森林

(3)司机违规行为

3.因此,地图匹配算法

GPS的出租车轨迹与常用地图的火星坐标系

4.日均出行次数、空载率、出行高峰与低谷、工作日与休息日

5.结合POI进行分析(城市功能区)

二、可视化研究
TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data

纽约市出租车数据可视化研究 | Visual Exploration of Big Spatio-Temporal Urban Data:A Study of New York City Taxi Trips    作者:Nivan Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire, and Cl ´ audio T. Silva

Xin Yao, Lun Wu, Di Zhu, Yong Gao, Yu Liu. Visualizing spatial interaction characteristics with direction-based pattern maps. Journal of Visualization. 2019. DOI: 10.1007/s12650-018-00543-4

大规模城市时空数据的可视化探索:以纽约出租车载客记录的研究为例 (Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips)

信睿, 艾廷华, 杨伟, 冯涛. 顾及出租车OD点分布密度的空间Voronoi剖分算法及OD流可视化分析[J]. 地球信息科学学报, 2015, 17(10): 1187-1195.

金澄,陈瑗瑗,杨敏. 面向轨迹起止特征点数据的多比例尺可视化方法[J]. 地球信息科学学报, 2017, 19(8): 1011-1018.

三、另辟蹊径
1.【为司机出谋划策】
Ma S , Zheng Y , Wolfson O . Real-Time City-Scale Taxi Ridesharing[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(7):1782-1795.

Yuan N J , Zheng Y , Zhang L , et al. T-Finder: A Recommender System for Finding Passengers and Vacant Taxis[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(10):2390-2403.

孙飞, 张霞, 唐炉亮, 刘章, 杨雪, 董坤. 基于GPS轨迹大数据的优质客源时空分布研究[J]. 地球信息科学学报, 2015, 17(3): 329-335.

唐炉亮,段倩,阚子涵,李清泉. 出租车交接班行为识别与时空分布研究[J]. 地球信息科学学报, 2017, 19(2): 167-175.

2.【基于出行目的的合作式拼车】
Wang, Y., Kutadinata, R., & Winter, S. (2016). Activity-based ridesharing: Increasing flexibility by time geography. In ACM SIGSPATIAL (p. 1). San Francisco, CA.

Wang, Y., Winter, S., & Ronald, N. (2017). How much is trust: The cost and benefit of ridesharing with friends. Computers, Environment and Urban Systems, 65, 103–112.

Wang, Y., Winter, S., & Tomko, M. (2018). Collaborative activity-based ridesharing. Journal of Transport Geography,[1] Wang, Y., Kutadinata, R., & Winter, S. (2016). Activity-based ridesharing: Increasing flexibility by time geography. In ACM SIGSPATIAL (p. 1). San Francisco, CA

3.【广告牌摆放】
用海量出租车轨迹数据选取广告牌放置位置

Liu D , Weng D , Li Y , et al. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations[J]. IEEE Transactions on Visualization and Computer Graphics, 2016:1-1.

4.【影响出行的其他因素】
康朝贵,刘璇,许欣悦,秦昆. 天气因素对武汉市出租车出行活动的影响[J]. 地球信息科学学报, 2019, 21(1): 118-127.

5.【医疗】
Chen, Y., et al., Mapping the spatial disparities in urban health care services using taxi trajectories data. TRANSACTIONS IN GIS, 2018. 22(2): p. 602-615.

ang, G.; Song, C.; Shu, H.; Zhang, J.; Pei, T.; Zhou, C. Assessing Patient bypass Behavior Using Taxi Trip Origin–Destination (OD) Data. ISPRS Int. J. Geo-Inf. 2016, 5, 157.

Kong, X.; Liu, Y.; Wang, Y.; Tong, D.; Zhang, J. Investigating Public Facility Characteristics from a Spatial Interaction Perspective: A Case Study of Beijing Hospitals Using Taxi Data. ISPRS Int. J. Geo-Inf. 2017, 6, 38.

陈卓然,黄翀,刘高焕,刘庆生,李贺,王蔷,李鑫杨. 基于出租车GPS数据的居民就医时空特征分析[J]. 地球信息科学学报, 2018, 20(8): 1111-1122.

6.【结合其他数据】
基于夜间灯光遥感影像和出租车GPS数据的人口空间化

Yu B , Lian T , Huang Y , et al. Integration of nighttime light remote sensing images and taxi GPS tracking data for population surface enhancement[J]. International Journal of Geographical Information Science, 2018(7):1-20.

7.【新技术应用】
(1)【CPU与GPU加速】

HiSpatialCluster:适用于大数据分析的高性能空间聚类工具

Yiran Chen, Zhou Huang, Tao Pei, Yu Liu. HiSpatialCluster: A novel high‐performance software tool for clustering massive spatial points. Transactions in GIS. 2018, 22(5): 1275–1298. 
(2)【深度学习】

a主要是郑宇的城市计算团队

基于AI的路线通行时间估计 / Yilun Wang, Yu Zheng, Yexiang Xue. Travel Time Estimation of a Path using Sparse Trajectories. In Proceedings of the 20th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2014).

b其他一些arXiv上的文章

A Unified Neural Network Approach for Estimating Travel Time and Distance for a Taxi Trip

Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach

Artificial Neural Networks Applied to Taxi Destination Prediction

作者:小猿猴GISer
来源:CSDN
原文:https://blog.csdn.net/qq_912917507/article/details/88042948
版权声明:本文为博主原创文章,转载请附上博文链接!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值