算法沉淀——穷举、暴搜、深搜、回溯、剪枝综合练习二(leetcode真题剖析)

在这里插入图片描述

算法沉淀——穷举、暴搜、深搜、回溯、剪枝综合练习二

01.括号生成

题目链接:https://leetcode.cn/problems/generate-parentheses/

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。

示例 1:

输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]

示例 2:

输入:n = 1
输出:["()"]

提示:

  • 1 <= n <= 8

思路

通过从左到右进行递归,可以在每个位置判断放置左右括号的可能性。具体实现中,可以使用以下方法判断括号的合法性:

  1. 在放置左括号时,需要判断此时左括号的数量是否小于字符串总长度的一半(如果左括号的数量大于等于字符串长度的一半,继续放置左括号,则左括号的总数量一定大于右括号的总数量)。
  2. 在放置右括号时,需要判断此时右括号的数量是否小于左括号的数量。

这样的判断方式确保了在递归的过程中,左括号数量始终大于等于右括号数量,并且左括号的总数量与右括号的总数量相等,保证生成的括号序列是合法的。

代码

class Solution {
    int left=0,right=0,n;
    string path;
    vector<string> ret;
public:
    vector<string> generateParenthesis(int _n) {
        n=_n;
        dfs();
        return ret;
    }

    void dfs(){
        if(right==n){
            ret.push_back(path);
            return;
        }

        if(left<n){
            path.push_back('('); left++;
            dfs();
            path.pop_back(); left--;
        }

        if(right<left){
            path.push_back(')'); right++;
            dfs();
            path.pop_back(); right--;
        }
    }
};

02.组合

题目链接:https://leetcode.cn/problems/combinations/

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

  • 1 <= n <= 20
  • 1 <= k <= n

思路

这道题目要求从1到n中选择k个数的所有组合,其中不考虑顺序,即[1,2]和[2,1]等价。为了找出所有组合,但又避免重复计算相同元素的不同顺序的组合,我们可以按照以下流程进行:

  1. 将所有元素分别作为首位元素进行处理。
  2. 在之后的位置上同理,选择所有元素分别作为当前位置元素进行处理。
  3. 为避免计算重复组合,规定选择之后位置的元素时必须比前一个元素大,这样就不会有重复的组合(例如,[1,2]和[2,1]中[2,1]不会出现)。

这样的流程能够确保生成所有的组合,并且通过限制选择元素的大小顺序,避免了重复计算。

代码

class Solution {
    vector<vector<int>> ret;
    vector<int> path;
    int n,k;
public:
    vector<vector<int>> combine(int _n, int _k) {
        n=_n,k=_k;
        dfs(1);
        return ret;
    }

    void dfs(int start){
        if(path.size()==k){
            ret.push_back(path);
            return;
        }

        for(int i=start;i<=n;++i){
            path.push_back(i);
            dfs(i+1);
            path.pop_back();
        }
    }
};

03.目标和

题目链接:https://leetcode.cn/problems/target-sum/

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

思路

对于每个数,可以选择加上或减去它,逐个枚举每一个数字。在每个数都被选择时,检查得到的和是否等于目标值。如果相等,则记录结果。为了提高时间复杂度,可以事先计算数组中所有数字的和 以及数组的长度。这样可以迅速判断当前和减去剩余的所有数是否已经超过目标值 target,或者当前和加上剩下的数的和是否小于目标值 target。如果满足条件,就可以直接进行回溯。

代码

class Solution {
    int ret=0,target;
public:
    int findTargetSumWays(vector<int>& nums, int _target) {
        target=_target;
        dfs(nums,0,0);
        return ret;
    }

    void dfs(vector<int>& nums,int pos,int path){
        if(pos==nums.size()){
            if(path==target) ret++;
            return;
        }

        dfs(nums,pos+1,path+nums[pos]);
        dfs(nums,pos+1,path-nums[pos]);
    }
};

04.组合总和

题目链接:https://leetcode.cn/problems/combination-sum/

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

思路
对于 candidates 数组中的所有元素互不相同,因此在递归状态时,只需要对每个元素进行如下判断:

  1. 跳过当前元素,对下一个元素进行判断;
  2. 将当前元素添加到当前状态中,选择添加当前元素时,之后仍可以继续选择当前元素(可以重复选择同一元素)。

因此,在选择当前元素并向下传递下标时,应该直接传递当前元素的下标。这样可以确保在递归过程中,每个元素只考虑一次,避免重复计算。

代码

class Solution {
    vector<vector<int>> ret;
    vector<int> path;
    int target;
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int _target) {
        target=_target;
        dfs(candidates,0,0);
        return ret;
    }

    void dfs(vector<int>& candidates,int pos,int sum){
        if(sum==target){
            ret.push_back(path);
            return;
        }
        else if(sum>target||pos==candidates.size()) return;

        for(int i=pos;i<candidates.size();++i){
            path.push_back(candidates[i]);
            dfs(candidates,i,sum+candidates[i]);
            path.pop_back();
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的鱼佬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值