1677. 城市交通路网 (Standard IO)

该博客介绍了一种使用动态规划方法求解城市交通路网中从A到E的最短路径问题。通过读取城市间的费用矩阵,初始化路径费用并逐步更新,最终找到从第一个城市到最后一个城市的最小费用。程序中展示了具体的C++实现,包括输入处理、动态规划算法及最短路径的回溯输出。
摘要由CSDN通过智能技术生成

下图表示城市之间的交通路网,线段上的数字表示费用,单向通行由A->E。试用动态规划的最优化原理求出A->E的最省费用。如图:求v1到v10的最短路径长度及最短路径。

输入

第一行为城市的数量N;后面是N*N的表示两个城市间费用组成的矩阵。

输出

第1个城市到第n个城市的最省费用。

样例输入

10
0 2 5 1 0 0 0 0 0 0
0 0 0 0 12 14 0 0 0 0
0 0 0 0 6 10 4 0 0 0
0 0 0 0 13 12 11 0 0 0
0 0 0 0 0 0 0 3 9 0
0 0 0 0 0 0 0 6 5 0
0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0

样例输出

minlong=19
1 3 5 8 10

#include<bits/stdc++.h>
using namespace std;
int n,i,j,x,f[100],c[100],a[100][100];
int main()
{
    memset(a,0,sizeof(a));
    memset(c,0,sizeof(c));
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=1;i<=n;i++)
    {
        f[i]=1000000;
    }
    f[n]=0;
    for(i=n-1;i>=1;i--)
    {
        for(x=i+1;x<=n;x++)
        {
            if(a[i][x]>0&&f[x]!=1000000&&f[i]>a[i][x]+f[x])
            {
                f[i]=a[i][x]+f[x];
                c[i]=x;
            }
        }
    }
    printf("minlong=%d\n",f[1]);
    x=1;
    while(x!=0)
    {
        printf("%d ",x);
        x=c[x];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值