下图表示城市之间的交通路网,线段上的数字表示费用,单向通行由A->E。试用动态规划的最优化原理求出A->E的最省费用。如图:求v1到v10的最短路径长度及最短路径。
输入
第一行为城市的数量N;后面是N*N的表示两个城市间费用组成的矩阵。
输出
第1个城市到第n个城市的最省费用。
样例输入
10 0 2 5 1 0 0 0 0 0 0 0 0 0 0 12 14 0 0 0 0 0 0 0 0 6 10 4 0 0 0 0 0 0 0 13 12 11 0 0 0 0 0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 6 5 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
样例输出
minlong=19 1 3 5 8 10
#include<bits/stdc++.h>
using namespace std;
int n,i,j,x,f[100],c[100],a[100][100];
int main()
{
memset(a,0,sizeof(a));
memset(c,0,sizeof(c));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++)
{
f[i]=1000000;
}
f[n]=0;
for(i=n-1;i>=1;i--)
{
for(x=i+1;x<=n;x++)
{
if(a[i][x]>0&&f[x]!=1000000&&f[i]>a[i][x]+f[x])
{
f[i]=a[i][x]+f[x];
c[i]=x;
}
}
}
printf("minlong=%d\n",f[1]);
x=1;
while(x!=0)
{
printf("%d ",x);
x=c[x];
}
}