# hdu5726 GCD(gcd +二分+rmq)

Problem Description
Give you a sequence of N(N100,000) integers : a1,...,an(0<ai1000,000,000). There are Q(Q100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l,r)(1l<rN)such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).

Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.

The first line of each case contains a number N, denoting the number of integers.

The second line contains N integers, a1,...,an(0<ai1000,000,000).

The third line contains a number Q, denoting the number of queries.

For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.

Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l,r) such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).

Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4

Sample Output
Case #1: 1 8 2 4 2 4

6 1

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define Key_value ch[ch[root][1]][0]
map<int,ll>mp;
map<int,ll>::iterator it;

int q[100100][2];

int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int gcd1[100100][30];

int a[100006];
void init_rmq(int n)
{
int i,j;
for(i=1;i<=n;i++){
gcd1[i][0]=a[i];
}

for(j=1;j<=20;j++){
for(i=1;i<=n;i++){
if(i+(1<<j)-1<=n){
gcd1[i][j]=gcd(gcd1[i][j-1],gcd1[i+(1<<(j-1))][j-1]);
gcd1[i][j]=gcd(gcd1[i][j-1],gcd1[i+(1<<(j-1))][j-1]);
}
}
}
}

int getgcd(int l,int r)
{
int k,i;
if(l>r)swap(l,r);
k=(log((r-l+1)*1.0)/log(2.0));
return gcd(gcd1[l][k],gcd1[r-(1<<k)+1][k]);
}

int main()
{
int n,m,i,j,T,cas=0;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
mp.clear();
init_rmq(n);
int l,r,mid;
for(i=1;i<=n;i++){
//printf("----->%d\n",i);
int val=a[i];
int pos=i;
while(pos<=n){
val=getgcd(i,pos);
l=pos,r=n;
while(l<=r){
mid=(l+r)/2;
if(getgcd(i,mid)==val)l=mid+1;
else r=mid-1;
}
mp[val]+=(r-pos+1);
pos=l;
}

}
scanf("%d",&m);
for(i=1;i<=m;i++){
scanf("%d%d",&q[i][0],&q[i][1]);
}
printf("Case #%d:\n",++cas);
for(i=1;i<=m;i++){
printf("%d %lld\n",getgcd(q[i][0],q[i][1]),mp[getgcd(q[i][0] ,q[i][1] ) ] );
}
}
return 0;
}