线性代数Review

这篇博客回顾了线性代数的重要概念,包括多元函数极值的求解,二次型的定义及其在坐标变换下的表现。文章详细探讨了二次型的标准化过程,强调了配方法在处理无平方项时的作用,并解释了对称方阵的相合性和对角化。还介绍了实对称阵的相合规范型,探讨了它们如何影响二次型的几何形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数Review

多元函数极值

  • 运筹学正好遇到,各阶偏导为0之后还要看泰勒展开的高阶项,(当首个非零为 奇数/偶数 阶)

二次型

  • 二次型的定义(只有二阶的项)
  • V V V(任意域 F F F上的线性空间)与 F n F^n Fn(n维向量空间)之间由一组基建立 同构映射
  • 两组基之间的 过度矩阵 P P P: (新基=旧基 * P, 新基表示为旧的的线性组合,右边乘是因为是列变换(列的线性组合,这里基是列向量) )
    ( β 1 , . . . , β 2 ) = ( α 1 , . . . , α 2 ) P (\beta_1,...,\beta_2) = (\alpha_1,...,\alpha_2)P (β1,...,β2)=(α1,...,α2)P
    两组基下的 坐标变换公式 => : ) 旧的坐标=P * 新的坐标[unknow],(这里坐标都是列向量,**左边乘是行变换,行的线性组合) )
    X = P Y X = P Y X=PY
  • 二次型的标准型 (变量的平方和形式,有加有减)
  • 定理: 任何二次型可以配方法化为标准型,通过一可逆线性变换
  • 配方法在没有平方项时要先代换出平方项
  • 二次型的规范型(加减平方项的系数都是1)
  • 二次型的几何
  • 一个对称方阵就对应一个二次型 !!!

对称方阵的相合

  • 定义 :二次型的矩阵(对称阵)
  • 定义: 对于n阶方阵A,B, 存在n阶可逆方阵 P P P, 使得 B = P T A P B= P^T AP B=PTAP,则A,B相合
  • 相合可以传递
  • 对称方阵相合的仍然是对称方阵,反对称类似
  • 有限维度线性空间上的一个二次型两个不同基下的矩阵是相合的.
    二次型里面的 x i , y i , z i x_i ,y_i ,z_i xi,yi,zi之类的,就是代表在一组基里面各个基元的系数值,即 xyz变量代表某组基下的坐标变量
    可以认为是一个n维几何图形在该基下的方程的系数
  • 对称方阵的相合对角化算法 A = ( S , I ) A= (S , I) A=(S,I),行变化,列变换 最终 I = > P I => P I=>P
  • 对任何n阶对称方阵,存在n阶可逆方阵P,使 为对角阵,且对角元可以按任意顺序排列!
  • 对于实数域上的任意n阶对称方阵 S S S,存在n阶实可逆方阵 P P P:
    P T S P = d i a g ( I ( p ) , − I ( q ) , O ( n − p − q ) ) P^T SP = diag(I_{(p)},-I_{(q)},O_{(n-p-q)}) PTSP=diag(I(p),I(q),O(npq)) 其中 p + q = r a n k ( S ) p+q = rank(S) p+q=rank(S)
    上面式子称为 实对称阵相合规范型

未完待续

内容概要:本文详细探讨了智慧医疗建设的历程、现状、挑战及未来发展趋势。智慧医疗建设经历了信息化、数字化和数智化三个阶段,政策、需求和技术是其发展的三大推动力。文章指出,当前智慧医疗已从数据收集与治理阶段迈向数据价值应用阶段,特别是在高质量数据库建设、云计算、人工智能等技术的推动下,实现了临床科研、药物研发、真实世界研究及数字营销等多个场景的商业化落地。此外,文中还分析了医疗信息化系统同质化、数据孤岛、互联互通等痛点,并提出了云化转型、新产品、新技术和新服务作为突破方向。最后,通过奈特瑞、医渡科技、东软集团三个企业案例,展示了不同企业在智慧医疗领域的创新实践。 适合人群:医疗信息化从业者、医疗行业研究人员、医疗机构管理者、医疗科技企业相关人员、政策制定者及对智慧医疗感兴趣的投资者。 使用场景及目标:①了解智慧医疗建设的阶段性特征和发展趋势;②掌握医疗信息化建设中的关键技术和应用场景;③探讨解决医疗信息化系统同质化、数据孤岛等问题的策略;④学习企业如何通过新产品、新技术和新服务实现突破,推动智慧医疗发展。 其他说明:本文通过对智慧医疗建设的深入剖析,强调了政策导向、技术创新和市场需求的重要性,为企业和政策制定者提供了宝贵的参考。同时,文章也揭示了未来智慧医疗发展的广阔前景,特别是在数据资产化和数智化应用方面的巨大潜力。阅读时应注意结合政策背景和技术发展趋势,关注行业动态和企业创新实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值