线性代数Review

这篇博客回顾了线性代数的重要概念,包括多元函数极值的求解,二次型的定义及其在坐标变换下的表现。文章详细探讨了二次型的标准化过程,强调了配方法在处理无平方项时的作用,并解释了对称方阵的相合性和对角化。还介绍了实对称阵的相合规范型,探讨了它们如何影响二次型的几何形状。
摘要由CSDN通过智能技术生成

线性代数Review

多元函数极值

  • 运筹学正好遇到,各阶偏导为0之后还要看泰勒展开的高阶项,(当首个非零为 奇数/偶数 阶)

二次型

  • 二次型的定义(只有二阶的项)
  • V V V(任意域 F F F上的线性空间)与 F n F^n Fn(n维向量空间)之间由一组基建立 同构映射
  • 两组基之间的 过度矩阵 P P P: (新基=旧基 * P, 新基表示为旧的的线性组合,右边乘是因为是列变换(列的线性组合,这里基是列向量) )
    ( β 1 , . . . , β 2 ) = ( α 1 , . . . , α 2 ) P (\beta_1,...,\beta_2) = (\alpha_1,...,\alpha_2)P (β1,...,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值