线性代数Review
多元函数极值
- 运筹学正好遇到,各阶偏导为0之后还要看泰勒展开的高阶项,(当首个非零为 奇数/偶数 阶)
二次型
- 二次型的定义(只有二阶的项)
- V V V(任意域 F F F上的线性空间)与 F n F^n Fn(n维向量空间)之间由一组基建立 同构映射
- 两组基之间的 过度矩阵
P
P
P: (新基=旧基 * P, 新基表示为旧的的线性组合,右边乘是因为是列变换(列的线性组合,这里基是列向量) )
( β 1 , . . . , β 2 ) = ( α 1 , . . . , α 2 ) P (\beta_1,...,\beta_2) = (\alpha_1,...,\alpha_2)P (β1,...,β2)=(α1,...,α2)P
两组基下的 坐标变换公式 => : ) 旧的坐标=P * 新的坐标[unknow],(这里坐标都是列向量,**左边乘是行变换,行的线性组合) )
X = P Y X = P Y X=PY - 二次型的标准型 (变量的平方和形式,有加有减)
- 定理: 任何二次型可以配方法化为标准型,通过一可逆线性变换
- 配方法在没有平方项时要先代换出平方项
- 二次型的规范型(加减平方项的系数都是1)
- 二次型的几何
- 一个对称方阵就对应一个二次型 !!!
对称方阵的相合
- 定义 :二次型的矩阵(对称阵)
- 定义: 对于n阶方阵A,B, 存在n阶可逆方阵 P P P, 使得 B = P T A P B= P^T AP B=PTAP,则A,B相合
- 相合可以传递
- 对称方阵相合的仍然是对称方阵,反对称类似
- 有限维度线性空间上的一个二次型在两个不同基下的矩阵是相合的.
二次型里面的 x i , y i , z i x_i ,y_i ,z_i xi,yi,zi之类的,就是代表在一组基里面各个基元的系数值,即 xyz变量代表某组基下的坐标变量
可以认为是一个n维几何图形在该基下的方程的系数 - 对称方阵的相合对角化算法 A = ( S , I ) A= (S , I) A=(S,I),行变化,列变换 最终 I = > P I => P I=>P
- 对任何n阶对称方阵,存在n阶可逆方阵P,使 为对角阵,且对角元可以按任意顺序排列!
- 对于实数域上的任意n阶对称方阵
S
S
S,存在n阶实可逆方阵
P
P
P:
P T S P = d i a g ( I ( p ) , − I ( q ) , O ( n − p − q ) ) P^T SP = diag(I_{(p)},-I_{(q)},O_{(n-p-q)}) PTSP=diag(I(p),−I(q),O(n−p−q)) 其中 p + q = r a n k ( S ) p+q = rank(S) p+q=rank(S)
上面式子称为 实对称阵 的 相合规范型