石子合并问题

石子合并问题是最经典的DP问题。首先它有如下3种题型:


(1)有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动任意的2堆石子合并,合并花费为新合成的一堆石子的数量。求将这N堆石子合并成一堆的总花费最小(或最大)。


分析:当然这种情况是最简单的情况,合并的是任意两堆,直接贪心即可,每次选择最小的两堆合并。本问题实际上就是哈夫曼的变形。



(2)有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量。求将这N堆石子合并成一堆的总花费最小(或最大)。


 
分析:我们熟悉矩阵连乘,知道矩阵连乘也是每次合并相邻的两个矩阵,那么石子合并可以用矩阵连乘的方式来解决。

设dp[i][j]表示第i到第j堆石子合并的最优值,sum[i][j]表示第i到第j堆石子的总数量。那么就有状态转移公式:





  1. #include <iostream>  
  2. #include <string.h>  
  3. #include <stdio.h>  
  4.   
  5. using namespace std;  
  6. const int INF = 1 << 30;  
  7. const int N = 205;  
  8.   
  9. int dp[N][N];  
  10. int sum[N];  
  11. int a[N];  
  12.   
  13. int getMinval(int a[],int n)  
  14. {  
  15.     for(int i=0;i<n;i++)  
  16.         dp[i][i] = 0;  
  17.     for(int v=1;v<n;v++)  
  18.     {  
  19.         for(int i=0;i<n-v;i++)  
  20.         {  
  21.             int j = i + v;  
  22.             dp[i][j] = INF;  
  23.             int tmp = sum[j] - (i > 0 ? sum[i-1]:0);  
  24.             for(int k=i;k<j;k++)  
  25.                 dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j] + tmp);  
  26.         }  
  27.     }  
  28.     return dp[0][n-1];  
  29. }  
  30.   
  31. int main()  
  32. {  
  33.     int n;  
  34.     while(scanf("%d",&n)!=EOF)  
  35.     {  
  36.         for(int i=0;i<n;i++)  
  37.             scanf("%d",&a[i]);  
  38.         sum[0] = a[0];  
  39.         for(int i=1;i<n;i++)  
  40.             sum[i] = sum[i-1] + a[i];  
  41.         printf("%d\n",getMinval(a,n));  
  42.     }  
  43.     return 0;  
  44. }  

直线取石子问题的平行四边形优化:


  1. #include <iostream>  
  2. #include <string.h>  
  3. #include <stdio.h>  
  4.   
  5. using namespace std;  
  6. const int INF = 1 << 30;  
  7. const int N = 1005;  
  8.   
  9. int dp[N][N];  
  10. int p[N][N];  
  11. int sum[N];  
  12. int n;  
  13.   
  14. int getMinval()  
  15. {  
  16.     for(int i=1; i<=n; i++)  
  17.     {  
  18.         dp[i][i] = 0;  
  19.         p[i][i] = i;  
  20.     }  
  21.     for(int len=1; len<n; len++)  
  22.     {  
  23.         for(int i=1; i+len<=n; i++)  
  24.         {  
  25.             int end = i+len;  
  26.             int tmp = INF;  
  27.             int k = 0;  
  28.             for(int j=p[i][end-1]; j<=p[i+1][end]; j++)  
  29.             {  
  30.                 if(dp[i][j] + dp[j+1][end] + sum[end] - sum[i-1] < tmp)  
  31.                 {  
  32.                     tmp = dp[i][j] + dp[j+1][end] + sum[end] - sum[i-1];  
  33.                     k = j;  
  34.                 }  
  35.             }  
  36.             dp[i][end] = tmp;  
  37.             p[i][end] = k;  
  38.         }  
  39.     }  
  40.     return dp[1][n];  
  41. }  
  42.   
  43. int main()  
  44. {  
  45.     while(scanf("%d",&n)!=EOF)  
  46.     {  
  47.         sum[0] = 0;  
  48.         for(int i=1; i<=n; i++)  
  49.         {  
  50.             int val;  
  51.             scanf("%d",&val);  
  52.             sum[i] = sum[i-1] + val;  
  53.         }  
  54.         printf("%d\n",getMinval());  
  55.     }  
  56.     return 0;  
  57. }  


(3)问题(2)的是在石子排列是直线情况下的解法,如果把石子改为环形排列,又怎么做呢?


分析:状态转移方程为:





其中有:




  1. #include <iostream>  
  2. #include <string.h>  
  3. #include <stdio.h>  
  4.   
  5. using namespace std;  
  6. const int INF = 1 << 30;  
  7. const int N = 205;  
  8.   
  9. int mins[N][N];  
  10. int maxs[N][N];  
  11. int sum[N],a[N];  
  12. int minval,maxval;  
  13. int n;  
  14.   
  15. int getsum(int i,int j)  
  16. {  
  17.     if(i+j >= n) return getsum(i,n-i-1) + getsum(0,(i+j)%n);  
  18.     else return sum[i+j] - (i>0 ? sum[i-1]:0);  
  19. }  
  20.   
  21. void Work(int a[],int n)  
  22. {  
  23.     for(int i=0;i<n;i++)  
  24.         mins[i][0] = maxs[i][0] = 0;  
  25.     for(int j=1;j<n;j++)  
  26.     {  
  27.         for(int i=0;i<n;i++)  
  28.         {  
  29.             mins[i][j] = INF;  
  30.             maxs[i][j] = 0;  
  31.             for(int k=0;k<j;k++)  
  32.             {  
  33.                 mins[i][j] = min(mins[i][j],mins[i][k] + mins[(i+k+1)%n][j-k-1] + getsum(i,j));  
  34.                 maxs[i][j] = max(maxs[i][j],maxs[i][k] + maxs[(i+k+1)%n][j-k-1] + getsum(i,j));  
  35.             }  
  36.         }  
  37.     }  
  38.     minval = mins[0][n-1];  
  39.     maxval = maxs[0][n-1];  
  40.     for(int i=0;i<n;i++)  
  41.     {  
  42.         minval = min(minval,mins[i][n-1]);  
  43.         maxval = max(maxval,maxs[i][n-1]);  
  44.     }  
  45. }  
  46.   
  47. int main()  
  48. {  
  49.     while(scanf("%d",&n)!=EOF)  
  50.     {  
  51.         for(int i=0;i<n;i++)  
  52.             scanf("%d",&a[i]);  
  53.         sum[0] = a[0];  
  54.         for(int i=1;i<n;i++)  
  55.             sum[i] = sum[i-1] + a[i];  
  56.         Work(a,n);  
  57.         printf("%d %d\n",minval,maxval);  
  58.     }  
  59.     return 0;  
  60. }  



可以看出,上面的(2)(3)问题的时间复杂度都是O(n^3),由于过程满足平行四边形法则,故可以进一步优化到O(n^2)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值