39、学术论文提取式摘要与科学文章关系分类研究

学术论文提取式摘要与科学文章关系分类研究

1. 学术论文提取式摘要相关研究

随着科学文献的不断增长,如何高效地获取其中的关键信息成为了一个重要的问题。提取式摘要作为一种有效的信息获取方法,受到了广泛的关注。传统基于机器学习的提取式摘要方法通常依赖于手工特征,如句子位置和长度。然而,近年来,一些强大的神经模型逐渐崭露头角。

  • 神经模型进展

    • 序列到序列模型 :Cheng和Lapata提出了一种基于序列到序列框架的新型数据驱动模型。在该模型中,编码器接收以向量表示的句子序列,解码器输出相应的显著性分数序列。
    • 多任务学习模型 :Isonuma等人基于Cheng和Lapata的模型,倡导将提取式摘要与文档分类相结合的思想,使得缺乏参考摘要的数据集也能进行句子提取。
    • 利用图像标题的模型 :Narayan等人进一步扩展了Cheng和Lapata的模型,利用新闻文章中的图像标题进行摘要提取。
    • 两层双向RNN模型 :Nallapati等人提出了一种两层双向RNN模型,该模型对文本进行分层编码,并根据隐藏状态向量和一些人工设计的特征对每个句子进行分类。
  • 单篇学术论文提取式摘要研究

    • 基于论证分区的方法 :Contra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值