学术论文提取式摘要与科学文章关系分类研究
1. 学术论文提取式摘要相关研究
随着科学文献的不断增长,如何高效地获取其中的关键信息成为了一个重要的问题。提取式摘要作为一种有效的信息获取方法,受到了广泛的关注。传统基于机器学习的提取式摘要方法通常依赖于手工特征,如句子位置和长度。然而,近年来,一些强大的神经模型逐渐崭露头角。
-
神经模型进展
- 序列到序列模型 :Cheng和Lapata提出了一种基于序列到序列框架的新型数据驱动模型。在该模型中,编码器接收以向量表示的句子序列,解码器输出相应的显著性分数序列。
- 多任务学习模型 :Isonuma等人基于Cheng和Lapata的模型,倡导将提取式摘要与文档分类相结合的思想,使得缺乏参考摘要的数据集也能进行句子提取。
- 利用图像标题的模型 :Narayan等人进一步扩展了Cheng和Lapata的模型,利用新闻文章中的图像标题进行摘要提取。
- 两层双向RNN模型 :Nallapati等人提出了一种两层双向RNN模型,该模型对文本进行分层编码,并根据隐藏状态向量和一些人工设计的特征对每个句子进行分类。
-
单篇学术论文提取式摘要研究
- 基于论证分区的方法 :Contra