kite3
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
44、结构化手册的应用案例及使用考量
本文探讨了结构化手册和知识阐释方法在提高老年护理领域生产力和程序标准化中的应用。随着日本老龄化进程的加快,护理人员面临日益增加的负担,传统的文本手册和知识工程方法存在诸多限制。为此,提出了一种基于CHARM模型的知识阐释方法,使护理人员能够自主构建结构化手册,并实现不同场景下的知识共享和比较。文章还分析了结构化手册在多个领域的应用,包括老年护理、高等教育、地方振兴、建筑、废物处理等,总结了其优势和面临的挑战,并提出了未来发展方向,如数据整合、自动化技术研发和用户体验优化等。原创 2025-07-22 08:01:56 · 43 阅读 · 0 评论 -
43、员工驱动服务创新的现场知识表示工具
本文探讨了员工驱动创新背景下,用于服务现场的知识表示工具的设计与应用。重点介绍了DRAW2这一新型半结构化知识表示工具,其通过模板和标签功能,解决了知识重用和输入效率的问题。结合Zuzie Poetry和DRAW的案例,文章比较了非结构化、半结构化和结构化知识表示的优劣,并通过两次研讨会验证DRAW2在护理场景中的实用性。研究为在实际工作中积累和共享知识提供了技术方法和理论支持。原创 2025-07-21 16:56:31 · 44 阅读 · 0 评论 -
42、英语会话课堂活动的可视化分析与教学启示
本文介绍了一种基于经验抽样法和数据可视化技术的低负担课堂活动调查方法,用于分析英语会话课堂的教学实践。通过观察五个课堂并生成课堂活动热力图,研究揭示了不同教师在课堂结构、师生互动模式以及时间管理方面的差异。文章总结了主要发现,讨论了研究的局限性,并提出了潜在的应用方向,旨在促进第二语言教学的批判性反思和教学质量的提升。原创 2025-07-20 10:41:42 · 88 阅读 · 0 评论 -
41、行业知识阐释与英语课堂活动调查新方法
本文介绍了第一届国际行业知识阐释研讨会(kNeXI 2017)的概况,并重点分析了一种结合活动编码与数据可视化技术的英语课堂活动调查新方法。该方法通过实时记录、编码和可视化课堂活动,解决了传统方法中记忆偏差、信息不完整等问题,为第二语言教育中的批判性反思提供了量化分析工具。文章还讨论了该方法的优势和未来研究方向,展现了其在教育领域的应用前景。原创 2025-07-19 16:37:07 · 95 阅读 · 0 评论 -
40、利用文档特定信息进行关系分类
本文探讨了如何利用科学文档中的论文正文提取文档特定信息,以辅助摘要中的关系分类任务。提出了三种提取文档特定信息的方法:术语句子(TS)、词汇链(LC)和语义相关句子(SRS),并设计了基于卷积神经网络(CNN)的模型架构对这些信息进行编码,进而用于关系分类。实验结果表明,论文正文是一种有价值的信息来源,尤其是词汇链方法显著提升了分类性能。文章还分析了当前方法的局限性,并提出了未来的研究方向,包括句子向量优化、跨领域适应性和多模态信息融合等。原创 2025-07-18 10:59:33 · 42 阅读 · 0 评论 -
39、学术论文提取式摘要与科学文章关系分类研究
本文围绕学术论文提取式摘要和科学文章关系分类展开研究,介绍了多种基于神经模型的提取式摘要方法,并提出了一种结合文档特定信息的科学关系分类模型。通过设计分层编码器-解码器模型,有效提高了摘要提取的准确性和减少了重大错误;同时,通过利用科学论文本身的文档信息,新模型在关系分类任务上表现出更优的性能。研究还提供了提取文档特定信息的三种方法,并在实验中验证了其有效性。研究结果有望在科学信息处理领域发挥重要作用,为不同领域的信息处理提供新思路和方法。原创 2025-07-17 09:15:56 · 97 阅读 · 0 评论 -
38、学术论文的分层神经提取式摘要生成器
本文介绍了一种用于学术论文的分层神经提取式摘要生成器。该模型通过卷积句子编码器、文档编码器与解码器以及基于树结构的分类器,结合句子、段落和章节的层次信息进行摘要生成。实验结果表明,该模型在ROUGE指标和正句提取百分比方面优于基线模型。同时,文章也探讨了模型的改进方向,如引入分心机制、调整损失函数和引入章节筛选机制,以进一步提高模型性能。原创 2025-07-16 09:30:21 · 38 阅读 · 0 评论 -
37、语言与技术领域的研究进展与应用探索
本博文探讨了多个前沿学术领域的研究进展与应用,包括日语潜在句中的不连续性及其句法分析、论证与保证国际研讨会(AAA 2017)的跨学科研究动态、科学文档分析(SCIDOCA 2017)的最新成果,以及针对学术论文的分层神经提取式摘要技术。研究内容涵盖了语言学、形式逻辑、人工智能、安全工程和自然语言处理等多个方向,展示了理论探索与实际应用的深度融合。原创 2025-07-15 16:39:09 · 43 阅读 · 0 评论 -
36、日语潜在句中的不连续性研究
本博文探讨了日语潜在句中的不连续现象及其语义解释问题,基于Morrill的多模态类型逻辑语法框架,引入插入和包裹运算符以处理潜在结构中的不连续成分。通过分析量化NP与情态后缀的交互、主格标记的辖域特性以及重建效应的缺失,研究揭示了传统生成语法在潜在句解释上的局限性。为解决格冲突和语义模糊问题,提出了引入非选择性绑定与类指运算符Gen的分析方法,有效处理潜在句的句法推导与语义解读。研究对自然语言处理及日语学习具有重要应用价值。原创 2025-07-14 16:12:28 · 43 阅读 · 0 评论 -
35、句法与词汇语义标注及日语潜在句中的不连续性研究
本博文探讨了句法与词汇语义标注的方法,以及日语潜在句中的不连续性问题。在句法标注部分,介绍了索引的格式和作用,并通过示例说明其在生成FrameNet风格标注中的应用。在日语潜在句研究部分,分析了传统语法与生成语法对潜在句的不同解释,指出了它们的不足,并提出基于范畴/类型逻辑语法框架的新分析方法。该方法能够更好地处理潜在句中的格交替、范围差异以及名词化时的-ga/-no转换现象,为日语潜在句研究提供了新的视角。原创 2025-07-13 10:44:00 · 61 阅读 · 0 评论 -
34、无索引的句法和词汇语义标注
本文探讨了句法和词汇语义标注的不同方法,重点分析了 PropBank 和 FrameNet 的基于索引的标注机制,并介绍了一种无需索引、通过规则转换捕捉句子依赖关系的新方法。PropBank 依赖宾州树库的索引结构,通过语义 ID 和角色集描述谓词的语义角色;FrameNet 则通过字符跨度标注,将谓词与框架关联。然而,这两种方法在处理结构变化和特定语言时存在局限。后续解释的无索引标注方法通过归一化树结构并转换为范围控制理论(SCT)表达式,能够灵活处理复杂句子结构和跨语言差异,最终生成带有索引信息的树结构原创 2025-07-12 14:49:03 · 119 阅读 · 0 评论 -
33、日语证据性表达的因果前提语义学及无索引标注方法研究
本博文探讨了日语证据性表达的因果前提语义学理论,并介绍了一种新的无索引句法和词汇语义标注方法。通过自然度评级实验和语料库研究,揭示了语境对证据性形式选择的复杂影响,验证了Youda和Darou与因果关系的密切关联。同时,博文分析了传统索引标注方法的局限性,并提出无索引标注方法的优势及其在自然语言处理和理论语言学研究中的应用前景。原创 2025-07-11 16:25:34 · 67 阅读 · 0 评论 -
32、语言表达中的否定与证据性语义解析
本博客深入探讨了语言表达中的否定与证据性语义,重点分析了带有否定和情感表达功能的词汇(如‘gwai2’、‘like hell’、‘fuck’等)以及日语中证据性语素‘youda’的语义机制。通过形式化方法,如因果前提语义学,解析了证据性表达背后的信息结构和因果依赖关系。同时,博客还展示了证据性语义在日常交流、文学作品中的实际应用,并进行了跨语言比较,揭示了其在语言学理论和自然语言处理等领域的研究意义与应用前景。原创 2025-07-10 11:55:40 · 62 阅读 · 0 评论 -
31、粤语词汇“gwai2”的语义与情感表达分析
本文深入探讨了粤语词汇“gwai2”的多重语义与情感表达功能,重点分析其在否定用法中的作用规则以及作为纯情感表达词的使用情况。通过结合理论分析与实际例句,文章揭示了“gwai2”在不同语境中的复杂表现,并尝试对其进行统一解释,进一步讨论了其与负面情感的关联以及在特定情况下的积极情感覆盖现象。原创 2025-07-09 12:55:27 · 67 阅读 · 0 评论 -
30、量化派生名词与粤语虚词“gwai2”的语义解析
本博文探讨了语言学中两个重要的语义问题:量化派生名词(DNs)的语义解析问题,以及粤语虚词“gwai2”的语义功能分析。在量化派生名词的研究中,传统方法面临事件描述与量化辖域的矛盾,通过引入Frana对隐性疑问句(CQs)的复制理论分析,提出了一种扩展解决方案,成功解释了共外延事件的语义行为。对于粤语虚词“gwai2”,文章深入分析了其作为否定标记与强化词的双重功能,并指出其本质上是一种表达性成分,主要传达说话者的负面情绪。此外,还比较了“gwai2”与其他语言中的表达性成分,揭示了其在语义与语用层面的独特原创 2025-07-08 13:31:38 · 55 阅读 · 0 评论 -
29、派生名词与隐性命题:语义解读的困境与解决之道
本文探讨了语言语义学中派生名词(DNs)的语义解读问题,分析了歧义假说和事件方法各自的局限性,并借鉴隐性问题(CQs)的分析提出了事件概念(ICs)的解决方案。通过对比CQs与DNs的相似性,文章论证了事件概念方法在解释替换等价物问题和事实性承诺方面的有效性,为DNs的语义研究提供了新的思路。原创 2025-07-07 12:24:31 · 37 阅读 · 0 评论 -
28、自然语言语义转换与推理:挑战与解决方案
本文探讨了自然语言处理中语义转换与逻辑推理的核心挑战,重点分析了如何将抽象形式术语通过TS转换转化为一阶逻辑公式,并利用自动定理证明器进行蕴含关系判定。文章详细介绍了TS转换的步骤、广义量词的处理、内涵性与限定描述等难点问题,并总结了该方法在FraCaS语料库上的应用效果及未来发展方向。原创 2025-07-06 11:52:58 · 75 阅读 · 0 评论 -
27、语言分析与转换语义学:从狗哨语到文本推理
本博客深入探讨了语言研究中的两个重要领域:狗哨语和转换语义学。狗哨语部分分析了其工作机制、三种研究观点及统一模型,并提出了未来的研究方向,包括跨文化狗哨语分析和听话者人设的作用。转换语义学部分详细介绍了其在文本推理中的应用流程,特别是在处理广义量词、明确描述和内涵动词方面的策略及挑战。整体内容为语言学研究和自然语言处理提供了理论支持和实践方法。原创 2025-07-05 16:26:15 · 68 阅读 · 0 评论 -
26、狗哨式言论的运作机制解析
本文深入解析了狗哨式言论的语义和语用机制,探讨了现有理论(如常规会话含义观点、推理主义观点和博弈论观点)的优缺点,并提出了一种融合默认信息、背景知识与表达形式的混合观点。这种新观点结合了多种理论的优势,解决了外延等价问题,同时考虑了听众的推理过程和说话者的意图,为理解狗哨式言论提供了更全面的解释框架。原创 2025-07-04 13:04:33 · 224 阅读 · 0 评论 -
25、从众包词汇数据中收集加权强制转换
本文探讨了如何利用众包词汇数据(如JeuxDeMots)收集加权强制转换,并将其应用于自然语言处理中的语义分析系统。重点介绍了如何通过众包任务验证共谓约束、集成和排序词汇转换、校正词典数据等内容,并展示了如何将这些转换整合到MGL(蒙塔古生成词典)框架中以解决词汇多义性和类型不匹配问题。此外,文章还讨论了当前系统的局限性以及未来的研究方向,如多部分强制转换的集成和时间复杂度的优化。原创 2025-07-03 12:27:04 · 41 阅读 · 0 评论 -
24、从众包词汇数据中收集加权强制转换以进行组合语义分析
本文探讨了如何从众包词汇数据中收集加权强制转换,以支持基于类型理论的组合语义分析。重点介绍了 Montagovian Generative Lexicon (MGL) 框架的语义处理机制,并结合 JeuxDeMots 等众包词汇资源,分析如何提取和推断词汇变换,以解决自然语言中的多义词和类型不匹配问题。通过实际案例展示了语义分析过程,并讨论了类型理论框架的优势与挑战。原创 2025-07-02 13:19:36 · 70 阅读 · 0 评论 -
23、象形文字与字母文字在非对称信号博弈中的表现
本文通过改进的标准强化学习模型,探讨象形文字与字母文字在非对称信号博弈中的表现差异。研究发现,在初始认知阶段,象形文字更具优势;而在长期学习过程中,字母文字表现更优。结合不同初始权重和学习速度的模拟进一步表明,发送者的学习优势在语言发展中起着关键作用。研究结果与人类学文献一致,揭示了语言演化过程中两种文字形式的动态优势变化。原创 2025-07-01 10:33:50 · 44 阅读 · 0 评论 -
22、日语表达性小句与象形文字和字母文字在非对称信号博弈中的研究
本文探讨了日语表达性小句(ESC)的结构与语义问题,并通过信号博弈模型分析了象形文字(如中文)与字母文字(如英文)在使用和学习过程中的不对称性。研究结合了认知与学习角度的差异,采用强化学习方法模拟了两种文字在交流效率上的表现。结果表明,象形文字在语言发展的早期阶段具有优势,而字母文字在长期使用中更高效。这些发现为语言结构、演变及应用提供了新的理论视角和实践启示。原创 2025-06-30 15:38:01 · 60 阅读 · 0 评论 -
21、日语表达性小从句解析
本文探讨了日语和英语中的表达性小从句(ESCs)的差异,并解决了日语 ESCs 中存在的两个谜题。通过分析日语 ESCs 的特点,提出了一种改进的句法-语义分析方案,解释了日语中第二人称代词使用不自然和 ESCs 可作论元的现象。同时,文章展望了未来研究的方向,包括日语 ESCs 内部结构、跨语言比较以及语用学研究。原创 2025-06-29 11:53:15 · 62 阅读 · 0 评论 -
20、内涵语义理论关系探究
本博客探讨了内涵语义理论的发展及其本体论关系,分析了TY3、AHS、PT和IntL等理论的相互表示性,并将其分为细粒度和粗粒度两类理论。博客还研究了TY3²到TY2的类型转换、翻译函数和语义约束等模型间简化策略。此外,博客还分析了日语表达性小从句的特点,与英语表达性小从句的差异及其句法解释方法。通过对语义理论和语言现象的研究,为构建更具解释力的语义模型和跨语言研究提供了理论支持。原创 2025-06-28 12:06:47 · 59 阅读 · 0 评论 -
19、内涵语义理论的关联探索
本文探讨了不同内涵语义理论之间的本体论关系,分析了经典理论、广义理论和属性理论的特点与关联。通过识别理论间的编码与还原关系,研究了构建本体简约且解释力强的态度报告模型的路径。总结了不同理论的优势与局限,并展望了未来在语义学和人工智能领域的应用前景。原创 2025-06-27 14:38:42 · 50 阅读 · 0 评论 -
18、技术结构聚类与语义理论研究
本博客围绕技术结构聚类与自然语言语义相关研究展开。技术结构聚类实验通过链接挖掘将117个组分为4个聚类,发现全球金融危机未对技术结构产生显著影响,且聚类1包含最多主题组,表明不同技术领域存在相似的技术结构。在自然语言语义方面,从Montague语义学的局限性出发,引入超内涵语义学,探讨了不同语义理论的特点与本体关系,并指出为解释信念态度报告而提出的理论在本质上存在编码等价性。研究对于理解技术结构演化和自然语言处理中的语义建模具有重要意义,未来可进一步探索语义理论之间的关系并应用于人工智能领域。原创 2025-06-26 15:28:56 · 95 阅读 · 0 评论 -
17、金融投资与技术结构分析研究
本博客主要探讨了金融投资中的OLMAR方法及其性能依赖因素,揭示了MAD-MRC这一股票市场的短期均值回归特征,并通过MRScore评估了均值回归趋势。同时,博客还研究了基于专利分类代码的技术结构分析方法,利用图结构和x-means聚类实现了技术领域的可视化和关联分析。两部分研究在风险评估、数据特征挖掘和未来优化方向上展现了潜在关联,并为金融投资策略和技术管理提供了跨领域的启示。原创 2025-06-25 11:34:51 · 44 阅读 · 0 评论 -
16、股票市场短期均值回归现象检测与OLMAR方法
本文围绕股票市场中的短期均值回归现象及OLMAR方法展开研究,旨在检测实际股票价格数据集中的均值回归特征,并分析OLMAR方法如何利用这些特征获取超额回报。研究提出了MRScore指标用于量化评估股票数据集中的均值回归趋势,并通过数据校正操作验证OLMAR方法对MAD-MRC特征的依赖性。结果表明,OLMAR方法在包含均值回归特征的数据中表现优异,但当特征被校正后其优势消失。研究为投资者和研究人员提供了对股票市场短期均值回归现象的深入理解及对OLMAR方法的有效评估。原创 2025-06-24 09:14:26 · 50 阅读 · 0 评论 -
15、新闻文章对交易有影响吗?——韩国市场高频数据研究
本文研究了新闻文章对韩国股票市场交易的影响,利用高频交易数据对五家市值较高的韩国公司进行了分析。研究发现,新闻文章的发布通常会引起交易量的显著增加,但对回报波动率的短期影响较小。不同语言的新闻对市场的影响存在差异,尤其是英语新闻在多个案例中表现出更强的影响力。案例研究表明,新闻的发布时间、语言和媒体来源都会影响投资者的交易行为。研究还提出未来将结合机器学习技术深入分析新闻文本内容,以帮助投资者更好地理解新闻与市场之间的关系。原创 2025-06-23 10:39:23 · 59 阅读 · 0 评论 -
14、基于智能体建模的医疗保险市场消费者行为分析
本文提出了一种基于智能体建模的方法,用于分析医疗保险市场中的消费者行为。该方法结合调查数据与统计验证,构建并优化智能体行为模型,进而通过计算机模拟实验验证模型的有效性,并分析口碑传播、社交网络拓扑以及营销策略对消费者购买行为的影响,为保险公司制定营销策略提供了科学依据。原创 2025-06-22 10:10:30 · 60 阅读 · 0 评论 -
13、股票价格预测与消费者行为分析
本文探讨了股票价格预测与医疗保险市场消费者行为分析两个主题。在股票价格预测方面,比较了DTW、DDTW和IDTW结合k-NN与k∗-NN的预测效果,结果显示IDTW+k∗-NN在准确性和盈利能力上均最优。在医疗保险市场分析中,提出了一种基于贝叶斯网络的代理行为模型,用于分析消费者行为和口碑传播效应,并为制定有效的营销策略提供了方法和建议。原创 2025-06-21 15:41:11 · 70 阅读 · 0 评论 -
12、日本进出口比率研究与股票价格预测方法探讨
本文探讨了日本进出口比率的计算方法以及基于IDTW和k∗-NN的股票价格预测新方法。研究通过文本挖掘和投入产出表构建算法分析了日本的进出口情况,发现进口比率高于出口比率,并提出了改进的预测模型。股票预测方法利用IDTW衡量波动模式相似性,并结合k∗-NN选择最相似的历史波动,实验表明该方法在准确性和盈利能力上优于传统方法。原创 2025-06-20 09:44:46 · 47 阅读 · 0 评论 -
11、基于日本贸易数据库的投入产出表生成算法:处理模糊的进出口信息
本文提出了一种基于日本贸易数据库(TDB)的投入产出表生成算法,重点解决了进出口信息模糊的问题。通过文本挖掘技术,从TDB信用报告中的自由文本提取个别公司的进出口比例,并对无法直接提取的比例进行建模和估计。文章还介绍了考虑进出口的交易估计算法,并利用交换代数形式和蒙特卡罗模拟生成内生部门的投入产出表。研究为构建更精确、实时的经济分析工具提供了方法支持。原创 2025-06-19 12:24:41 · 72 阅读 · 0 评论 -
10、基于代理的标牌系统评估模拟研究
本博文介绍了一种基于代理的标牌系统评估模拟研究,通过构建考虑行人代理视野的模型,定量分析标牌系统在大型设施(如机场航站楼)中的引导效果。研究详细描述了代理的行为逻辑,包括信息更新、设施选择、行走行为等关键过程,并通过多组实验探讨了标牌布局对迷路程度、成功率、等待时间等指标的影响。研究结果为优化标牌系统设计、提升用户舒适度和交通效率提供了理论支持和实践指导。原创 2025-06-18 11:02:24 · 79 阅读 · 0 评论 -
9、商业与设施中的多领域研究成果与模拟系统构建
本博客围绕商业与设施领域的多学科研究成果展开,涵盖了贸易金融、消费市场和技术分析等多个方向。重点介绍了一种用于评估大型公共设施中signage系统的模拟模型。该模型通过构建环境、标志和行人代理三个模块,从动态角度评估signage系统的设计效果。研究结合行人视野和信息搜索行为,提出基于不同场景的实验方案,旨在为设施管理者提供科学决策支持,提升行人体验并推动相关领域的研究发展。原创 2025-06-17 16:42:47 · 42 阅读 · 0 评论 -
8、折纸实验与人工智能商业研讨会研究成果解读
本研究结合折纸实验与人工智能商业研讨会(AI-Biz2017)的研究成果,深入探讨了经验知识在新任务完成中的作用及其局限性。折纸实验表明,已有经验仅对与新任务相似的部分产生显著影响,缩短任务时间,但在其他部分作用有限。AI-Biz2017研讨会则展示了人工智能在商业问题解决中的广泛应用。研究还提出了未来在提示设计、研究对象扩展及其他任务影响因素方面的改进方向。成果对教育方法优化与商业数据分析具有重要参考价值。原创 2025-06-16 11:49:24 · 45 阅读 · 0 评论 -
7、折纸实验:具身知识对智力任务的影响研究
本研究通过两个折纸实验探讨了具身知识对智力任务的影响。实验1比较了有折鹤经验和无折鹤经验的参与者在完成鹤和凤凰折纸任务时的表现,结果显示有折鹤经验的参与者在鹤任务上表现更快且更稳定。实验2调整任务顺序,验证了已有折鹤经验对凤凰任务的积极影响。研究结论表明,具身知识可以从已知任务迁移到新任务中,提高执行效率,并受任务顺序的影响。原创 2025-06-15 11:01:49 · 74 阅读 · 0 评论 -
6、法律考试问答中的文本蕴含分析
本文探讨了使用Siamese卷积神经网络在法律考试问答中进行文本蕴含分析的方法。通过提取法律条文中的条件、结论及其否定特征,结合最大池化、随机失活和ReLU等CNN组件,构建了一个高效的文本蕴含判断模型。该方法在COLIEE比赛中取得了优于单个卷积神经网络的性能。同时,文章分析了模型的优势与局限性,并提出了未来改进和应用的方向,包括深入挖掘法律特征、优化模型架构、建立解释机制以及跨领域应用。原创 2025-06-14 12:36:27 · 32 阅读 · 0 评论 -
5、法律案例分析与考试问答中的智能技术应用
本文探讨了智能技术在法律领域的应用,主要包括从案例法到判决理由的自动识别,以及利用深度暹罗网络进行法律律师资格考试中的问答文本蕴含识别。研究通过结合原则分类器和引用段落分类器实现判决理由的自动识别,提高了法律分析的效率;同时,基于深度暹罗网络的问答系统在法律考试中的文本蕴含识别任务中表现出色,优于传统的卷积神经网络。尽管取得了初步成果,但这些方法仍需进一步改进,例如引入更复杂的语义模型、扩展数据集等。未来,智能技术可广泛应用于法律文书自动生成、法律风险评估等领域,为法律行业带来新的变革。原创 2025-06-13 14:02:15 · 35 阅读 · 0 评论
分享