2、人工智能训练的理论研究与应用探索

人工智能训练的理论研究与应用探索

1. 人工智能训练的背景与需求

人工智能(AI)在当今智能机器中已变得至关重要。以智能手机为例,它利用基于AI的人脸识别进行用户认证,其AI语音助手能免去用户手动操作设备,提升了使用便利性。然而,商业产品中的AI应用高度依赖云服务器,与云的通信不仅会因通信通道的不可靠延迟导致延迟问题,还会在未经用户同意的情况下传输用户数据,引发隐私问题。

为解决这一问题,许多深度神经网络(DNN)加速器提供了设备端推理功能。但这些加速器的应用有限且准确率较低,因为它们只是基于预训练的DNN重复预定任务。在预训练过程中难以对用户环境进行训练,当推理处理器处于意外情况时,性能会变差,其被动行为也阻碍了提供用户友好的AI服务。

因此,对片上训练的需求日益增加。片上训练不仅能弥补准确率下降的问题,还能通过将全局知识调整为适应用户特定数据集来实现个性化功能。此外,它还能通过分布式学习分担服务器的工作负载,在数据集收集过程中保护隐私,便于扩展DNN训练。不过,在微AI系统中实现训练颇具挑战,边缘/移动设备必须利用有限的计算资源和电池容量进行训练,且训练需要快速高效,以适应不断变化的环境。

2. 设备端DNN训练的必要性

有研究总结了AI的六级评级,展示了AI处理器随着智能提升的发展方向。最初,DNN应用高度依赖云计算,训练和推理都在云端进行。一级智能通过采用云 - 边缘协同加速DNN推理,减少了对云的依赖。系统可以通过提高推理的独立性进一步提升智能水平。但一级到三级智能仍将训练部分留给云服务,仅支持基于DNN推理的预测应用。

未来AI的发展趋势是在移动或边缘设备上进行DNN训练。支持移动设备训练的最简单方法是云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值