人工智能训练的理论研究与应用探索
1. 人工智能训练的背景与需求
人工智能(AI)在当今智能机器中已变得至关重要。以智能手机为例,它利用基于AI的人脸识别进行用户认证,其AI语音助手能免去用户手动操作设备,提升了使用便利性。然而,商业产品中的AI应用高度依赖云服务器,与云的通信不仅会因通信通道的不可靠延迟导致延迟问题,还会在未经用户同意的情况下传输用户数据,引发隐私问题。
为解决这一问题,许多深度神经网络(DNN)加速器提供了设备端推理功能。但这些加速器的应用有限且准确率较低,因为它们只是基于预训练的DNN重复预定任务。在预训练过程中难以对用户环境进行训练,当推理处理器处于意外情况时,性能会变差,其被动行为也阻碍了提供用户友好的AI服务。
因此,对片上训练的需求日益增加。片上训练不仅能弥补准确率下降的问题,还能通过将全局知识调整为适应用户特定数据集来实现个性化功能。此外,它还能通过分布式学习分担服务器的工作负载,在数据集收集过程中保护隐私,便于扩展DNN训练。不过,在微AI系统中实现训练颇具挑战,边缘/移动设备必须利用有限的计算资源和电池容量进行训练,且训练需要快速高效,以适应不断变化的环境。
2. 设备端DNN训练的必要性
有研究总结了AI的六级评级,展示了AI处理器随着智能提升的发展方向。最初,DNN应用高度依赖云计算,训练和推理都在云端进行。一级智能通过采用云 - 边缘协同加速DNN推理,减少了对云的依赖。系统可以通过提高推理的独立性进一步提升智能水平。但一级到三级智能仍将训练部分留给云服务,仅支持基于DNN推理的预测应用。
未来AI的发展趋势是在移动或边缘设备上进行DNN训练。支持移动设备训练的最简单方法是云
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



