运筹系列33:有效集法与代码分析

1. 算法简介

有效集法类似单纯形法,是其在二次目标函数时的升级版。这两种算法的特点都是迭代点会循着约束边界前进,直到达到问题的最优点。算法原理可以参考这里
有效集法的思路是,从取到等号的约束条件出发,每次沿着优化目标函数的方向在边界上移动。与单纯形法不一样的地方在于每次移动时不是直接
移动到新的顶点,而是要求解一个二次方程。假设原问题是:
在这里插入图片描述
第k+1次的 x k + p x_k+p xk+p满足:
min ⁡ p ∣ a i p = 0 ( x k + p ) G ( x k + p ) / 2 + ( x k + p ) c \min_{p|a_ip=0} (x_k+p)G(x_k+p)/2+(x_k+p)c minpaip=0(xk+p)G(xk+p)/2+(xk+p)c
等价于
min ⁡ p ∣ a i p = 0 p G p / 2 + p ( G x k + c ) \min_{p|a_ip=0}pGp/2+p(Gx_k+c) minpaip=0pGp/2+p(Gxk+c)
求得的 p p p可以获得原约束不变条件下的优化方向。接下来就是看步长,如果 x k + p x_k+p xk+p不违反非有效集,那么步长为1.否则定义 x k + 1 = x k + α k p k x_{k+1}=x_k+α_kp_k xk+1=xk+αkpk,找到 a p k < 0 ap_k< 0 apk<0的所有约束,取 α = ( b − a x k ) / ( a p k ) \alpha=(b-ax_k)/(ap_k) α=(baxk)/(apk)最小的值作为 α k α_k αk,被选中的第k条约束称为blocking constraint,并且必然有某个之前的约束不再取等号,这样就构建了新的有效集 W k + 1 W_{k+1} Wk+1
如果计算下来 p = 0 p=0 p=0,那么要看下是否KKT条件都满足,如果对偶变量y都大于0,那么当前点为最优值,否则选取负数绝对值比较大的y对应的约束,删除后重新计算 p p p并移动。举个例子:
在这里插入图片描述
① 最开始有效集为{3,5}, x x x=(2,0),计算下来p=(0,0),有效集对偶变量{-2,-1},删除条件3。
② 有效集变为{5},继续求p=(-1,0),步长为1,新的点为 x x x=(1,0),p=(0,0),有效集对偶变量{-5},删除条件5.
③ 有效集变为{},继续求p=(0,2.5),步长为0.6,新的点为 x x x=(1,1.5),新增条件1
④ 有效集变为{1},继续求p=(0.4,0.2),步长为1,新的点为 x x x=(1.4,1.7),p=(0,0),有效集对偶变量{0.8},此时已经是最优集。

总结下来,每次迭代都是:在当前有效集下求最优的x和有效集对偶变量y,如果y有负数则删除对应约束重新求x和新的有效集下的对偶变量。
在这里插入图片描述

2. A/BPOpt

APOPT和BPOPT都是Advanced Process Solutions, LLC开发的。虽说主页上说有开源部分开发代码,但是没找到在什么地方。
APOPT使用active-set法,BPOPT使用内点法(与IPOPT类似)。APOPT目前有两种使用方法:使用AMPL/Pyomo,或者APMonitor/GEKKO。BPOPT则只能使用APMonitor/GEKKO。
算法特点如下:

  1. 聚焦快速检测不可行问题
  2. 充分利用并行计算

3. Julia实现

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值