1. 算法简介
有效集法类似单纯形法,是其在二次目标函数时的升级版。这两种算法的特点都是迭代点会循着约束边界前进,直到达到问题的最优点。算法原理可以参考这里。
有效集法的思路是,从取到等号的约束条件出发,每次沿着优化目标函数的方向在边界上移动。与单纯形法不一样的地方在于每次移动时不是直接
移动到新的顶点,而是要求解一个二次方程。假设原问题是:
第k+1次的
x
k
+
p
x_k+p
xk+p满足:
min
p
∣
a
i
p
=
0
(
x
k
+
p
)
G
(
x
k
+
p
)
/
2
+
(
x
k
+
p
)
c
\min_{p|a_ip=0} (x_k+p)G(x_k+p)/2+(x_k+p)c
minp∣aip=0(xk+p)G(xk+p)/2+(xk+p)c
等价于
min
p
∣
a
i
p
=
0
p
G
p
/
2
+
p
(
G
x
k
+
c
)
\min_{p|a_ip=0}pGp/2+p(Gx_k+c)
minp∣aip=0pGp/2+p(Gxk+c)
求得的
p
p
p可以获得原约束不变条件下的优化方向。接下来就是看步长,如果
x
k
+
p
x_k+p
xk+p不违反非有效集,那么步长为1.否则定义
x
k
+
1
=
x
k
+
α
k
p
k
x_{k+1}=x_k+α_kp_k
xk+1=xk+αkpk,找到
a
p
k
<
0
ap_k< 0
apk<0的所有约束,取
α
=
(
b
−
a
x
k
)
/
(
a
p
k
)
\alpha=(b-ax_k)/(ap_k)
α=(b−axk)/(apk)最小的值作为
α
k
α_k
αk,被选中的第k条约束称为blocking constraint,并且必然有某个之前的约束不再取等号,这样就构建了新的有效集
W
k
+
1
W_{k+1}
Wk+1。
如果计算下来
p
=
0
p=0
p=0,那么要看下是否KKT条件都满足,如果对偶变量y都大于0,那么当前点为最优值,否则选取负数绝对值比较大的y对应的约束,删除后重新计算
p
p
p并移动。举个例子:
① 最开始有效集为{3,5},
x
x
x=(2,0),计算下来p=(0,0),有效集对偶变量{-2,-1},删除条件3。
② 有效集变为{5},继续求p=(-1,0),步长为1,新的点为
x
x
x=(1,0),p=(0,0),有效集对偶变量{-5},删除条件5.
③ 有效集变为{},继续求p=(0,2.5),步长为0.6,新的点为
x
x
x=(1,1.5),新增条件1
④ 有效集变为{1},继续求p=(0.4,0.2),步长为1,新的点为
x
x
x=(1.4,1.7),p=(0,0),有效集对偶变量{0.8},此时已经是最优集。
总结下来,每次迭代都是:在当前有效集下求最优的x和有效集对偶变量y,如果y有负数则删除对应约束重新求x和新的有效集下的对偶变量。
2. A/BPOpt
APOPT和BPOPT都是Advanced Process Solutions, LLC开发的。虽说主页上说有开源部分开发代码,但是没找到在什么地方。
APOPT使用active-set法,BPOPT使用内点法(与IPOPT类似)。APOPT目前有两种使用方法:使用AMPL/Pyomo,或者APMonitor/GEKKO。BPOPT则只能使用APMonitor/GEKKO。
算法特点如下:
- 聚焦快速检测不可行问题
- 充分利用并行计算