SPEED:智能交通隐私保护框架

SPEED:一种基于深度学习的隐私保护框架,用于智能交通系统

摘要

在智能交通系统(ITS)中,路边摄像头被用于多种用途,例如监测车辆速度、违法行为以及检测停车场、街道和小路上的可疑活动。这些摄像头产生大规模多媒体数据,导致ITS在端到端通信中面临数据管理、冗余和隐私泄露等挑战。为解决这些问题,我们提出了一种名为SPEED的框架,该框架基于多级边缘计算架构和机器学习算法。在此框架中,由终端设备(如智能摄像头)捕获的数据被分发到多个一级边缘设备(LOEDs),以应对数据管理问题,并最小化因终端设备和LOEDs缓冲区溢出而导致的丢包。数据以压缩感知格式从LOEDs转发至二级边缘设备(LTEDs)。LTEDs采用在线最小二乘支持向量机(LS-SVMs)模型来确定压缩感知数据的分布特征和索引值,从而在LTEDs与高层级边缘设备(HLEDs)之间的传输过程中保护其隐私。HLEDs使用深度学习架构(即卷积神经网络(CNN))来估计转发数据中的冗余。该卷积神经网络用于检测转发数据中是否存在运动物体。若检测到运动,则将数据转发至云服务器进行进一步分析,否则予以丢弃。实验结果表明,多级边缘计算架构有助于管理生成的数据,而机器学习算法则有助于解决端到端通信中的数据冗余和隐私保护问题。

索引词 —智能交通系统,数据管理,冗余,隐私,LS-SVMs,卷积神经网络。

一、引言

SMART设备,例如智能交通系统(ITS)中的多媒体传感器节点(MSNs)或摄像头,会产生大量需要实时管理和传输的多媒体数据。这些生成的数据可能包含需要保护的敏感信息在端到端通信中需要受到保护。如果攻击者成功渗透网络,可能会滥用数据中包含的敏感信息,从而导致数据隐私受到损害。此外,多媒体数据通常包含冗余信息。由于这种冗余,数据在从源到目的地传输时将需要消耗计算和存储资源以及大量的带宽。这些挑战要求有一个能够管理生成的数据、保护敏感信息隐私并最小化冗余以避免资源滥用的框架。

多级边缘计算架构有助于解决数据管理问题。在此架构中,底层网络(即无线多媒体传感器网络(WMSN))被划分为多个可变大小的簇。在这些簇中,计算能力强大且具有更大缓冲空间的MSNs被选为一级边缘设备(LOEDs),其余MSNs则成为终端设备。每个簇仅由一个LOED代表。LOEDs除了管理簇外,还负责与二级边缘设备(LTEDs)进行通信和协调。近年来,为管理生成的数据并将其传输至边缘设备,提出了多种路由协议[1]。然而,这些协议无法应对智能交通系统(ITS)产生的大量混合数据。在ITS中使用这些协议来管理和传输实时多媒体数据,可能会由于LOEDs和终端设备上的缓冲区过载而导致频繁丢包。因此,亟需一种新型方案,以在ITS中将生成的数据分配给多个LOEDs,从而高效利用其可用的缓冲空间。

由智能交通系统中的移动传感器网络生成的数据通常通过异构网络发送到云服务器进行处理和存储。由于涉及异构网络,会产生无法接受的不必要延迟,从而影响智能交通系统的实时操作。多级边缘计算架构可以通过在网络边缘处理数据以实现更快的决策,从而帮助最小化这些不必要的延迟。然而,边缘设备的引入使数据隐私面临风险。传统的隐私保护框架旨在保护云计算平台上的数据隐私[2]。尽管这些框架效果良好,但它们是为集中式计算架构设计的。另一个限制是计算复杂度。与云服务器相比,边缘设备的资源受限。在智能交通系统中,通过传统隐私保护框架处理移动传感器网络生成的大数据可能会增加计算复杂度。为解决这些问题,需要一种基于在线机器学习算法的隐私保护技术,以保护多级边缘计算架构中的数据隐私。

第三个主要问题是生成数据中的冗余。在云服务器上处理和存储冗余信息会滥用可用的计算和存储资源。此外,冗余信息的传输占用了可用带宽,导致数据传输过程中的端到端延迟增加。解决该问题的一种方法是使用机器学习算法,在将数据转发到云服务器之前最小化冗余。近年来,研究人员开始使用知名机器学习算法(如支持向量机和人工神经网络)来处理数据,并在端到端通信期间最小化冗余[3]。这些系统采用简单的方法,是开源且易于使用的。由于具备这些特性,这些系统可被高层级边缘设备(HLEDs)利用,以执行数据冗余检查、节约云资源,并在端到端通信期间最小化网络流量。

在本文中,我们提出了一种为智能交通系统(ITSs)提供智能隐私保护端到端分布式通信(SPEED)的框架。所提出的框架基于多级边缘计算架构。在此架构中,生成的数据需经过三个阶段,以实现数据管理、隐私保护和冗余最小化服务。在数据管理方面,我们提出的框架采用高效的信道获取方案,并将数据分发至多个本地边缘卸载设备(LOEDs)。在隐私保护和冗余最小化方面,我们提出的框架结合使用了机器学习算法,即在线最小二乘支持向量机(LS-SVMs)和卷积神经网络(CNN)。据我们所知,目前尚无现有框架能够在面向智能交通系统的多级边缘计算架构中同时提供数据管理、隐私保护和冗余最小化服务。我们所提出框架的主要贡献如下。

我们提出的框架采用一种信道获取方案来提供数据管理服务。在此方案中,利用来自相邻LOED的可用传输信道将生成的数据分发到这些设备中。该方案有助于控制终端设备和LOED缓冲区的负载。默认情况下,终端设备将其采集的数据转发到指定的LOED。然而,如果指定的LOED过载且无法处理进一步的数据转发请求,则终端设备可以从相邻的LOED获取传输信道,并将采集的数据转发至这些设备。

在接收到数据后,本地边缘卸载设备(LOEDs)对数据应用压缩感知技术,将其转换为向量格式并转发给本地可信执行设备(LTEDs)。LTEDs使用在线最小二乘支持向量机模型(online LS-SVMs model)来确定向量化数据中稀疏成分的分布特征和索引值。随后,LTEDs根据稀疏成分进行洗牌,基于确定的分布特征和索引值,在本地可信执行设备与高信任边缘设备之间的传输过程中,通过使视觉内容无法被读取来保护其隐私。

高信任边缘设备采用基于卷积神经网络的深度学习架构来检查转发数据中的冗余。通过分析转发的数据并检测运动物体的存在来检查冗余。如果检测到运动,数据将被转发到云服务器进行进一步处理和存储。

本文的其余部分结构如下。第二节概述了本工作所针对领域的相关研究进展。第三节介绍了所提出的框架。第四节讨论了实验设置和仿真结果。最后,第五节对全文进行了总结。

二、文献综述

本节分为三个小节。第一小节概述了为高效数据分发而设计的各种路由方案。第二小节讨论了各种隐私保护方案。最后一小节总结了使用机器学习算法处理和分析不同类型数据的研究工作。

A. 数据分发

在[4]中提出了一项关于服务质量(QoS)相关问题(如延迟和端到-end延迟)的研究。该研究讨论了可用于解决车载网络中QoS相关问题的多通道分配协议。类似地,[5]中提出了一项针对无线传感器网络(WSNs)设计的多通道路由协议的综述,该综述讨论了各种协议的信道分配策略,以应对QoS相关问题。[4],[5]中的研究讨论并强调了在设计多通道路由协议过程中可能有用的各种研究挑战和未来研究方向。然而,这些研究在评估不同协议以解决QoS相关问题时,未考虑不同类型的流量,特别是多媒体数据。

文献[6]提出了一种用于MSN的路由方案。该方案基于动态计算成本估算传输路径,以选择下一跳邻居。文献[7]提出了一种基于多通道的WSN路由方案。该方案根据邻域信息恢复连接。类似地,文献[8]提出了一种用于传感器网络的路由方案。在此方案中,边缘设备通过利用网络统计信息(如流量状态和节点可用性)来帮助管理可用的传输通道。文献[6]–[8]中提出的方案采用不同策略,利用无线传感器网络中的多通道传输实现平滑的数据传输。然而,这些方案基本上是为非多媒体流量设计的,可能不适用于智能交通系统中终端设备生成的实时数据。

B. 隐私保护

一项关于保护数据机密性的调查在[9]中被提出。该调查分析了各种基于压缩感知的在安全和隐私方面对框架进行了比较,并得出结论:与密码学框架相比,简单的基于压缩感知的框架不够 robust。文献[10]中提出了针对智慧城市应用的数据处理综述,该综述总结了可用于以隐私保护方式高效处理智慧城市应用产生的大数据的各种机器学习算法和数据分析技术。文献[9],[10]中的综述讨论了可在安全且隐私保护的环境中处理数据的各种技术和框架。然而,这些综述主要关注安全和隐私挑战,并未讨论用于处理不同类型数据的目标技术的多样性和性能。

基于非线性支持向量机的隐私保护系统在[11]中被提出。该框架适用于医疗系统,可在不泄露患者隐私的情况下在线处理敏感医疗记录。在[12]中提出了一种用于保护数据隐私的系统。该系统结合使用差分隐私技术和分布式学习算法,以在混合网络中保护数据隐私。在[13]中提出了一种用于车载自组织网络的入侵检测系统。该系统使用交替方向乘子法训练机器学习分类器进行入侵检测,并采用差分隐私技术保护车辆通信中的数据隐私。在[11]–[13]中提出的系统通过结合差分隐私技术和机器学习算法来保护数据隐私。这些系统虽然高效,但计算复杂度较高,可能难以处理智能交通系统中终端设备生成的实时数据。

C. 数据分析

关于使用机器学习算法进行通信网络的研究在[14]–[16]中提出。这些研究讨论并综述了各种机器学习可用于在边缘计算和物联网架构中处理数据的算法。这些研究有助于突出机器学习算法在上述架构中的应用,但未考虑算法在处理实时多媒体数据时的性能表现。

在[17]中提出了一种基于深度学习技术的个性化医疗框架。该框架利用深度学习架构在边缘计算架构中处理和分析医疗数据。在[18]中提出了一种基于深度学习的框架,通过底层的边缘计算架构识别不同类型的食物,用于医疗系统。在[17],[18]中提出的框架在边缘计算架构中使用深度学习技术处理和分析医疗数据。然而,这些框架是特定于应用的,可能无法有效处理和分析智能交通系统中的终端设备生成的数据。

III. 智能隐私保护端到端分布式通信

在本节中,我们阐述了所提出的SPEED框架。图1展示了该框架的框图。所提出的框架基于多级边缘计算架构,包含三个阶段,以提供数据分发、隐私保护和冗余最小化服务。在第一阶段,采集的数据被分发到多个本地边缘卸载设备(LOEDs)上,以避免终端设备和LOEDs发生缓冲区溢出。在第二阶段,LOEDs利用压缩感知技术将接收到的数据转换为向量格式,并将其转发给本地可信执行设备(LTEDs)。LTEDs在接收到向量化数据后,使用在线最小二乘支持向量机模型(online LS-SVMs model)来确定向量化数据的公共和创新稀疏分量的分布特征和索引值。根据所确定的分布特征和索引值,LTEDs对公共和创新稀疏分量进行重排,以保护隐私在LTEDs与HLEDs之间端到端通信中向量化数据的视觉内容隐私。在第三阶段,HLEDs接收到洗牌数据后,首先通过反向洗牌恢复公共和创新稀疏分量以还原原始数据。数据恢复后,HLEDs利用基于卷积神经网络的层与模块网络,通过检测运动物体的存在来进行冗余检查。如果检测到存在运动物体,则将数据转发至云服务器进行进一步处理。在接下来的小节中,我们将详细说明所提出框架的各个阶段。

A. 数据分发

在此阶段,我们假设底层网络由K个MSN组成,并被划分为多个簇。每个簇包含N个异构的MSN,其中N<K,并由一个LOED表示,即 γl,其中l ∈{1, 2,···, L}且 L< K。LOED是簇内具有最强计算能力和最大缓冲空间的MSN。LOED负责多项任务,例如从成员节点进行数据收集、与LTED通信以及对现有节点和新加入节点的管理。将网络划分为多个簇以及选择LOED的过程基于我们先前发表在[19],[20]中的研究成果。此外,在这些前期工作中,我们提出了轻量级认证方法,以确保只有授权的微传感器节点(MSN)才能与LOED和LTED通信。本阶段使用的各种符号总结于表I中。

在实时场景中,MSN的数据传输速率通常低于数据采集速率,如下方程所示。
$$
\sum D_{tn} < \sum D_{cn}, \quad (1)
$$
其中$D_{tn}$和$D_{cn}$分别表示MSN的数据传输率和数据捕获率。

由于传输速率较低,MSN的缓冲区可能会发生溢出,从而导致丢包。为了表示缓冲区溢出,我们使用一个阈值,即$T_n$,其值相当于MSN缓冲容量的80%。每个LOED维护一组时分多址(TDMA)时隙。每个成员节点被分配一个特定的时分多址(TDMA)时隙,用于将其采集的数据转发给所属的LOED。成员节点将其缓冲容量(即$B_n$)与$T_n$进行比较。如果$B_n$的值低于$T_n$,该节点将等待其所属LOED分配的TDMA时隙,即$\gamma_n$。如果$B_n$超过$T_n$且TDMA时隙尚未到达,该节点将向邻近簇的LOED(即 $\gamma_n$)发起信道获取请求,如下方程所示。
$$
\sum D_{tn} \rightarrow
\begin{cases}
\gamma_n, & \text{if } B_n < T_n, \
\gamma_n, & \text{otherwise}.
\end{cases}
\quad (2)
$$

与成员节点类似,本地边缘卸载设备(LOEDs)也具有有限的缓冲容量。因此,它们无法满足来自成员节点的无限数据请求。一个LOED的缓冲容量可通过以下方程确定。
$$
B_l = \sum_{n=1}^{N} d_{dt} D_{tn} + D_{cl}, \quad (3)
$$
其中$B_l$和$D_{cl}$分别表示LOED的缓冲容量和数据捕获率。

由于较低的传输速率和特定的TDMA时隙,成员节点的$B_n$值可能会很快超过$T_n$的值。如果TDMA时隙尚未到来,或相应的LOED因缓冲区溢出而无法处理数据请求,则成员节点需要立即通过从邻近簇的LOED获取信道,并将数据在这些LOED之间进行分发来响应。在这种情况下,邻近的LOED不仅需要维护来自自身成员节点转发的数据,还需要维护来自邻近簇节点转发的数据。这一现象可以通过修改方程3表示,如以下方程所示。
$$
B_l = \sum_{n=1}^{N} d_{dt} D_{tn} + \sum_{m=1}^{M} d_{dt} D_{tm} + D_{cl}, \quad (4)
$$
其中$M$表示来自邻近簇转发数据请求的节点总数,$D_{tm}$表示它们传输的数据量。

在基于簇的边缘计算中,本地边缘卸载设备(LOED)首先在其邻域内广播其接收信号强度指示值(R)。移动传感器网络(MSN)在接收到广播后,根据接收信号强度指示值(R)按降序维护一个LOED列表,该列表中的第一个条目始终是其对应的LOED。当MSN无法将其数据转发到对应的LOED时,它将从列表中顺序选择下一个LOED,并向其发送信道获取请求,即请求发送(RTS)。RTS关联一个响应,即允许发送(CTSt),其中t表示等待时间的持续时间。LOED在接收到RTS后,检查是否存在空闲信道。如果存在可用信道,则通过发送CTS立即将其分配给请求的MSN。如果请求的MSN在t时间内未从所请求的LOED接收到CTS,则前者将移除该请求的LOED条目,并从其列表中选择下一个LOED,广播一个新的RTS。信道获取过程总结于算法1。

示意图0

表I 数据分布符号说明

符号 描述
$K$ 网络中MSN的总数
$N$ 每个簇中MSN的数量
$L$ LOED的总数
$\gamma_l$ 第$l$个LOED
$B_n$ 第$n$个MSN的缓冲容量
$T_n$ 缓冲区溢出阈值
$D_{tn}$ 第$n$个MSN的数据传输率
$D_{cn}$ 第$n$个MSN的数据捕获率

算法1 信道获取方案

输入:(l,n)
输出: (邻居_信道_分配:是 || 否)
LOED 广告 → 本地边缘卸载设备进行自我宣传。
Rl值 → 移动传感器网络用于选择本地边缘卸载设备。
将Rl值存储在表中 → 表包含本地边缘卸载设备的信息。
根据Rl值按降序对表进行排序
γl从表中选择 → 对应的LOED 选择
向 γl 广播加入请求 → 集群形成
n → γl ∀n ∈ N 一个MSN加入一个LOED。
Dc n → γl → 将转发数据发送到相应的LOED
如果 (Bn ≥ Tn) 则
    当 l ≤ L 时
        RTSl → γl → MSN 发起一个信道获取请求。
        如果 CTSt ≤ t,那么
            Dcn → γl → 信道获取成功。向 γl 广播数据。
            break → 退出循环
        else
            RTSl → γl+1 → 请求下一个 LOED
        end if
    end while
结束如果

B. 隐私保护

由移动传感器网络(MSNs)生成的数据量通常很大,需要充足的带宽。此外,多媒体数据中高度的时空相关性和稀疏性使敏感信息面临风险,可能导致隐私泄露。为应对这些挑战,本地边缘卸载设备(LOEDs)对移动传感器网络(MSNs)转发的数据应用一种轻量级的压缩感知技术。该技术利用多媒体数据中存在的高强度时空相关性和稀疏性,将其转换为向量格式。压缩感知是一种无损压缩技术,因此数据在目的地可以被完全恢复而不会丢失任何信息。本阶段使用的符号总结于表II。

在我们提出的框架中,我们针对视频数据。视频由多个帧组成,其中每个帧代表一个场景的图像。在视频处理中,帧是始终被划分为多个非重叠块,以关注不同区域并最小化计算负载。如果一个视频帧表示为$f_j$,其中$j ∈{1, 2,···, J}$,且一个块由向量$v_i$表示,其中$i ∈{1, 2,···, I}$,则向量格式的帧可由以下方程表示。
$$
f = {v_1, v_2,···, v_I}, \quad (5a)
$$
$$
s = {f_1, f_2,···, f_J}. \quad (5b)
$$
其中$s$表示一个场景的镜头。

在压缩感知技术中,为了在接收端成功重构压缩数据,需要一个大小为$p × q$(其中$p < q$)的随机生成的测量矩阵。矩阵类型可选,可根据系统需求进行选择。我们提出的框架采用置换的沃尔什‐哈达玛矩阵。选择该矩阵的原因在于其具备受限等距性质,有助于从压缩数据中成功恢复大量数值。压缩感知输出即$C$可通过以下方程获得,并发送至LTEDs进行进一步处理。
$$
c_j = Xf_j, \quad (6a)
$$
$$
C = {c_1, c_2,···, c_J}, \quad (6b)
$$
其中$c_j$表示一个长度为$p$的向量,$X$表示生成的沃尔什‐哈达玛矩阵。

在我们提出的框架中,我们假设本地边缘卸载设备(LOEDs)与本地可信执行设备(LTEDs)之间的连接是安全的。在接收到压缩感知输出后,LTEDs根据[21]中提出的最小化问题,通过以下方程确定每个向量的公共和创新稀疏成分。
$$
c_j = \arg \min_{\beta_1,\beta_2} \alpha_1|\beta_1|_ + \alpha_2|w\beta_1| 1 + \alpha_3|w\beta_2|.
\quad (7)
$$
这里,$\beta_1$表示公共稀疏成分,$\beta_2$表示创新稀疏成分,$\alpha_1$、$\alpha_2$和$\alpha_3$表示非负随机常数,$|\cdot|
$表示公共稀疏成分中奇异值的$l_1$范数,$|\cdot|_1$表示将公共稀疏成分视为向量时的$l_1$范数,$|\cdot|$表示创新稀疏成分的绝对范数,而$w$表示小波变换。在压缩感知数据中,公共稀疏成分代表背景区域,而创新稀疏成分代表视频帧中的运动物体。属于同一视频片段的所有帧中的创新稀疏成分可能相似。在公式7中,使用小波变换的目的是确定视频帧中静态区域与运动区域之间的稀疏性。

在确定了公共和创新稀疏分量后,下一步是计算它们的分布特征和索引值。这通过将公共和创新稀疏分量作为输入馈送到在线LS-SVM模型[22]中获得。选择在线LS-SVM模型的原因在于其快速收敛时间和低复杂度,使其成为实时多媒体处理的合适选择。分布特征和索引值通过以下方程计算。
$$
\beta_3 = \sum_{j=1}^{J} \xi + c_j + \theta, \quad (8)
$$
其中$\xi$表示拉格朗日乘子,$\theta$表示偏差常数,$\beta_3$表示由在线LS-SVM模型计算得到的分布特征和索引值。

在计算分布特征和索引值后,下一步是打乱普通和创新稀疏成分的实际位置。本地可信执行设备对这些成分进行打乱,使得数据不可读,从而在本地可信执行设备与高信任边缘设备之间的传输过程中保护视觉内容的隐私。

C. 冗余最小化

在我们提出的框架的这一阶段,我们假设高信任边缘设备(HLEDs)了解公共稀疏成分和创新稀疏成分的混洗过程,并能够重新混洗这些成分以恢复原始向量。在恢复向量后,下一步是将其与第二阶段本地可信执行设备(LTEDs)所使用的相同随机置换的沃尔什‐哈达玛矩阵的逆矩阵相乘。通过该乘法过程,原始视频帧得以无损恢复,未丢失任何信息。

成功恢复原始多媒体数据后,下一步是进行冗余检查。该检查通过基于卷积神经网络的深度学习架构来执行。该架构用于分析输入数据并检测其中物体的运动。该架构包含两个普通卷积层和四个模块。前两个模块称为卷积模块,而第三和第四个模块分别称为检测模块和回归模块。在卷积模块中,使用了两个可变尺寸的卷积核在不同尺度上从输入数据中提取不同的特征。检测模块和回归模块使用两个全连接层来分析卷积模块提取的特征,并检测不同尺寸的物体。检测模块的输出在一个特定范围内变化,即介于0和1之间。回归模块的主要目的是预测具有不同尺寸的已检测物体的各种特性。该架构基于[23]中提出的工作。此架构的主要目的是分析和理解图像。本阶段使用的符号在表III中进行了总结。

表III 冗余最小化的符号说明

符号 描述
$H$ 运动检测函数
$h_1$ 检测运动存在的函数
$h_2$ 检测运动程度的函数
$\vartheta_1, \vartheta_2$ 预定义权重
$Z$ 预定义运动类别总数
$d_y$ 运动物体的中心坐标、尺寸和欧拉角

为了检测视频片段中的运动及其程度,我们提出了一种基于上述深度学习架构的函数($H$),其由以下方程表示。
$$
H = \vartheta_1 h_1 + \vartheta_2 h_2, \quad (9)
$$
其中,$h_1$ 和 $h_2$ 分别是用于检测视频片段中运动及其程度的函数,$\vartheta_1$ 和 $\vartheta_2$ 是预定义权重。这些权重用于分别调整 $h_1$ 和 $h_2$ 的相对性能。

高信任边缘设备使用函数$h_1$来检测视频片段中物体的运动。该函数基于Softmax损失函数,并通过以下方程表示。
$$
h_1 = -\frac{1}{Y} \sum_{y=1}^{Y} \sum_{z=1}^{Z} 1{\lambda_y = \lambda_z} \log \left{ \frac{e^{(z)} 1(\delta_y)}{\sum {z=1}^{Z} e^{(z)}_1(\delta_y)} \right}, \quad (10)
$$
其中,$\delta_y$表示一个输入数据样本,$\lambda_y$表示该输入数据样本的真实标签,$Z$表示预定义运动的总数,$z_1(\delta_y)$表示Softmax分类层的相应输出,$\lambda_z$表示可能结果的真实值,$e^{(z)}_1(\delta_y)$表示某种运动类型的可能性,其值在0到1之间变化。

高信任边缘设备使用函数$h_2$来确定检测到的运动的程度。它是一种回归函数,基于[24]中提出的边界框回归方法,并在以下方程中表示。
$$
h_2 = \frac{1}{Y} \sum_{y=1}^{Y} \text{smoothL1}\left((d_y)_2(\delta_y) - d_y\right), \quad (11a)
$$
$$
\text{smoothL1}(c) =
\begin{cases}
0.5c^2, & \text{if } |c| < 1, \
|c| - 0.5, & \text{otherwise},
\end{cases} \quad (11b)
$$
其中$(d_y)_2(\delta_y)$表示SmoothL1 localization层的输出,$d_y$表示运动物体的中心坐标、尺寸和欧拉角。

基于深度学习架构的计算,高信任边缘设备做出以下决策。

  • 如果深度学习架构未检测到任何运动,则丢弃恢复的视频数据,且无需转发至云服务器。
  • 如果深度学习架构检测到某些运动,高信任边缘设备需要采取以下措施。
  • 高信任边缘设备需要为来自不同本地可信执行设备的数据设置优先级。
  • 具有最高运动程度的数据以及转发该数据的本地可信执行设备应被赋予更高的优先级。这些数据需要立即卸载到云服务器以进行进一步分析。
  • 如果深度学习架构检测到较小程度的运动,高信任边缘设备应等待并观察来自相应本地可信执行设备的数据中运动程度是否持续或不断增大。无论哪种情况,高信任边缘设备都需要将数据卸载到云服务器以进行进一步分析。

IV. 实验设置与仿真结果

本节讨论实验设置与仿真结果。我们提出的框架在Matlab 2018a中实现并运行。在仿真中,我们构建了一个由500个随机分布的微传感器节点(MSNs)组成的网络。仿真分多轮执行,每轮仿真中仅选择5%的MSN作为本地边缘卸载设备(LOEDs)。

为了评估我们所提出框架的性能,我们考虑了三种现有的隐私保护框架,即基于签名的认证密钥建立(SAKE)[25]、异构环签密(HRS)[26]、和增强型基于时间戳的密码认证(ETPA)[27]。与我们提出的框架类似,这些框架也在多个阶段运行。它们使用密码学来保护端到端通信中的数据,但这可能并不适合大规模多媒体数据。为了评估我们所提出框架的性能,我们考虑了多个指标,如计算开销、通信成本、数据包投递率和分割准确率。

在多级边缘计算架构中,本地边缘卸载设备通常承担多项任务,而数据量和微传感器节点总数的增加很容易导致本地边缘卸载设备上的整体计算开销上升。计算开销表示本地边缘卸载设备执行所有上述任务所需的总时间。如图2所示,与现有框架相比,SPEED框架在本地边缘卸载设备上产生的计算开销更小。由于SPEED框架的数据分发特性,本地边缘卸载设备仅专注于特定数量的移动传感器网络,并管理固定量的数据,从而降低了整体计算开销。

示意图1

通信成本表示在边缘设备之间传输的数据包总数。如图3所示,与SPEED框架相比,现有框架表现出更高的通信成本。不同于这些框架,我们提出的框架采用压缩感知技术将数据转换为向量格式,从而减少了从本地可信执行设备(LTEDs)到高信任边缘设备(HLEDs)传输的数据包数量。此外,由于数据的分布特性,每个本地边缘卸载设备(LOED)向本地可信执行设备(LTEDs)传输固定数量的数据包,从而维持了本地边缘卸载设备与本地可信执行设备之间的整体流量负载。因此,SPEED框架的整体通信成本保持在特定范围内。

示意图2

图4展示了基于数据包投递率的对比。该比率在存在不同数量恶意节点的情况下计算得出。如图所示,与现有框架相比,SPEED框架在平均数据包投递率方面表现出更高的性能,即达到94.96%,而现有框架SAKE、ETPA和HRS的数据包投递率分别为83.95%、77.8%和77.3%。由于现有框架中存在大量的数据传输,恶意节点数量的增加会显著影响整体的数据包投递率。数据包投递率与网络流量密度成正比。恶意节点注入的虚假流量可能导致网络拥塞,从而使合法节点无法正常传输数据,进而降低整体性能。在我们的仿真结果中,其他框架的数据包投递率出现了显著下降,尤其是在恶意节点数量超过20个时的情况。

示意图3

在数据通信中,多媒体数据通常会使用不同的编码方案在传输前进行压缩,以减小其数据量。在SPEED框架中,我们假设移动传感器网络(MSNs)为固定节点,因此它们采集的视频数据具有静态背景。与现有框架不同,SPEED框架在传输前采用压缩感知技术来减小数据量。当压缩数据到达高信任边缘设备(HLEDs)后,数据被恢复并输入至深度学习架构中,以检测运动物体的存在。我们所提出的框架在检测精度方面与现有框架进行了比较。在性能评估中,采用了以下指标:真阳性(TP)、假阳性(FP)、假阴性(FN)和F值。这些指标常用于二值分割。在性能分析中,这些指标用于以下方程。
$$
\text{Recall}(Re) = \frac{#TP}{#TP + #FN}, \quad
\text{Precision}(Pr) = \frac{#TP}{#TP + #FP}, \quad
F\text{-measure} = \frac{2 \times Pr \times Re}{Pr + Re}. \quad (12)
$$
其中,$#TP$、$#FN$ 和 $#FP$ 分别表示 TP、FN 和 FP 的总数。计算的指标,即 $Re$、$Pr$ 和 $F$ 值,以定量方式进行比较,其中较高的分数表示性能更好。如表IV所示,SPEED框架通过展示更高的定量评分,优于现有的框架。现有框架使用不同的有损编码技术,这会在视频数据中引入视觉伪影。为了准确检测运动物体,所提供的数据应清晰且无任何视觉伪影,例如模糊。由于采用了压缩感知技术,我们提出的框架生成了没有任何视觉伪影的清晰数据,并在高信任边缘设备上产生了更好的分割准确率,如最后一列表示的平均F值所示。高度压缩的数据、较高的分组丢弃率和较低的分组交付率会影响深度学习架构的性能,因此现有框架表现出较低的性能。

表IV 定量比较

框架 Recall (%) Precision (%) F-measure (%)
SPEED 96.8 95.2 96.0
SAKE 89.3 86.7 87.9
HRS 85.6 83.1 84.3
ETPA 87.4 84.9 86.1

V. 结论

在本文中,我们提出了一种名为SPEED的框架,旨在为智能交通系统(ITSs)提供智能隐私保护的端到端分布式通信。该框架基于多级边缘计算架构,并在三个阶段中运行。在第一阶段,它将采集的数据分发到多个本地边缘卸载设备(LOEDs)上,以减轻移动传感器网络(MSNs)和LOEDs缓冲区的负担。在第二阶段,数据在LOEDs处被压缩,并通过本地可信执行设备(LTEDs)上的在线最小二乘支持向量机模型(online LS-SVMs model)进行处理,以减少网络流量并保护端到端通信中的数据隐私。在最后阶段,通过高信任边缘设备(HLEDs)上的深度学习架构最小化采集数据中的冗余。在仿真过程中,我们提出的框架在各种性能指标上均优于现有框架。未来,我们计划通过引入移动节点、边缘设备和优化模型来扩展SPEED框架的应用范围。

内容概要:本文介绍了悬臂梁的有限元分析方法,重点采用多重网格高斯-赛德尔迭代法对有限元方程进行求解,并提供了完整的Matlab代码实现。文中详细阐述了有限元法的基本原理、网格划分策略、刚度矩阵组装、边界条件处理以及多重网格加速技术在提升高斯-赛德尔迭代效率方面的应用,有效提高了数值求解的收敛速度和计算效率。该方法适用于结构力学中的静态位移与应力分析,具有较强的工程应用价值。; 适合人群:具备有限元理论基础和Matlab编程能力的力学、土木、机械等工程领域研究生或科研人员;从事结构仿真与数值计算相关工作的技术人员;希望深入理解多重网格加速算法在工程问题中应用的学者。; 使用场景及目标:①掌握悬臂梁结构的有限元建模流程;②理解并实现高斯-赛德尔迭代法及其多重网格加速技术;③悬臂梁的有限元分析,采用多重网格高斯-赛德尔方法求解(Matlab代码实现)通过Matlab编程实践提升对数值方法与结构分析耦合机制的认识;④为复杂结构的高效求解提供可复用的算法框架与代码参考。; 阅读建议:建议读者结合有限元教材同步学习,先理解基本理论再调试代码,重点关注刚度矩阵的构建与边界条件施加方式,并尝试调整网格密度和材料参数以观察对结果的影响,从而深化对数值稳定性和精度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值