使用weka内置算法分析数据(图形界面操作)

本文利用Weka的naive bayes, SVM, Logistic Regression三种分类算法对鸢尾花和甲状腺功能减退数据进行分析。通过对鸢尾花数据的四种属性和甲状腺患者特征,进行十折交叉验证,比较了各算法的精度和效率。结果显示,不同算法在不同数据集上的表现各有优势。" 78516500,7369906,Node.js Stream:Readable类暂停模式解析,"['node.js', 'stream']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文

本文使用weka中内置的三种分类算法(naive bayes,SVM,Logistic Regression)根据收集到的鸢尾属植物的数据进行分类,通过精度和效率对三种算法进行比较。

1、鸢尾属植物的分类

数据中包含鸢尾属植物的四种属性。四种属性分别是萼片长度、萼片宽度、花瓣长度、花瓣宽度。数据中还包含鸢尾属植物的三种种类,分别是:Iris-setosa(山鸢尾)、Iris-Versicolous(杂色鸢尾)、Iris-Virginica(维吉尼亚鸢尾)。也就是说,每行数据有5个属性(花萼长度、花萼宽度、花瓣长度、花瓣宽度、所属种类)

通过weka图形界面的Experimenter模块添加三种算法,采用十折交叉验证来分析三种算法的结果。图1.1是三种算法分类的正确率对比。
2016-12-15 14-23-41屏幕截图.png-42.7kB

1.1

从图1.1的列表中可以看出,对于当前数据集的表现,三种算法在指定的显著性水平(significance level,这里设定是0.1)下可以认为正确率基本等同。
再比较三种算法正确分类个数的平均值,如图1.2所示,三种算法正确分类个数的平均值在显著性水平值为0.1的情况下可以认为是等同的。
2016-12-15 14-27-10屏幕截图.png-43.9kB
1.2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值