亚马逊云科技CEO谈及生成式AI的战略决策

亚马逊云科技首席执行官Adam Selipsky对亚马逊云科技进一步增长的前景感到非常兴奋。他估计,即使微软和谷歌等大型竞争对手取得了进展,但潜在客户中也只有10%转向了云计算。

 这留下了很大的增长空间,他认为增长可以从哪里来?更重要的是,什么才能让亚马逊云科技保持竞争力。

 答案当然是人工智能。亚马逊云科技在人工智能领域大举进军,但也面临一些挑战。ChatGPT的开发者OpenAI与微软签订了云服务独家协议。谷歌在人工智能上下了巨大的赌注,显然运行在自己的云服务之上,并通过谷歌云独家销售谷歌大模型的访问权限。

 因此,亚马逊云科技必须在其他方面都表现出色,并且仍然必须争夺运行这些大模型所需的硬件,而这些硬件供应正面临极度短缺。

 人工智能竞赛

 记者:现在,我正在关注人工智能——一个完全新生的市场。目前人工智能领域唯一赚钱的玩家似乎是Nvidia,它向所有人出售芯片。另一方面,消费者类人工应用程序似乎非常热门,但还没有人赚到钱。因此,市场还没有制定出一套有意义的成本结构。您是否采用相同的方法来拓展人工智能市场?或者随着市场的发展我们可能必须更加灵活?

 Adam:我觉得我们的基本做法是灵活的。我们有能力创建任何团队来专注于需要构建的任何东西,这比单体应用灵活得多。人工智能是基础。所有的炒作都是有原因的。我坚信,我们所交互的几乎每一个应用程序,无论是在职业上还是在我们的个人生活中,都将受到显著的颠覆,并且在许多情况下,将被人工智能彻底改造。

 我认为,随着生成式人工智能的发展越来越重要,不会再出现单一的生成式人工智能公司。人工智能并不是一个单独的东西。它本质上与云紧密相连。我为什么这么说呢?一方面,你需要一个适合你的人工智能数据策略。无论你是在谈论更好地服务教育、更好地服务金融服务客户,无论你是在谈论药物发现,无论你是在谈论媒体、资产创造,你都必须知道你拥有什么数据。你必须知道你想要获取哪些数据并将其作为生成人工智能的输入。

 那些长期在亚马逊云科技平台上建设数据平台的公司拥有巨大的优势,因为它们能够将数据很方便地进行输入。先进的数据平台位于云端。它位于亚马逊云科技上。这是一个有力的例子,说明了云中的数据和生成式人工智能如何相互绑定。

 另一个原因是,生成式人工智能并不便宜。目前它的价格非常昂贵。GPU的性能非常好,但也相当昂贵。例如,训练模型的成本非常昂贵。然后,运行推理或运行模型并在生产中对这些模型进行查询也非常昂贵。为了经济地完成这些任务,你需要云。绝大多数公司都需要像亚马逊云科技这样的公司进行创新,随着时间的推移,大幅降低成本,以推动生成式人工智能的使用量呈指数级增长。

 虽然我们确实是世界上最大的、也许是最大的基于GPU的主机之一,并且与你提到的 Nvidia 有着良好的关系,但我们也创新和设计自己的芯片。我们已经有了第三代通用芯片,但我们也有用于人工智能和机器学习的专用芯片:用于训练模型的Trainium,然后是用于运行模型和推理的Inferentia。这些芯片都做得很好,增长很快。

 我非常有信心,因为它们拥有用于人工智能的所有芯片技术中最佳的性价比。这对于Coherent、Anthropic、Stability AI和Hugging Face等正在构建AI模型的初创公司来说非常重要。当然,对于已经在人工智能领域跟亚马逊云科技合作的老牌公司来说,也很非常重要,比如Travelers、Ryanair和Bridgewater Associates。

 因此,云和人工智能并不是两个不同的东西。他们实际上只是同一事物的许多面孔中的两个。因此,我认为我们的组织模式将非常相似。我们已经建立了特定的目标团队来构建Amazon Bedrock,特定的团队来构建我们自己的Titan模型的Amazon基础模型。我们正在建立一个专门的团队来处理CodeWhisperer,等等。

 记者:所以,这是一场比赛。看来你不认为比赛有终点。

 Adam:对于我们任何一个商界人士来说,这场竞赛永远不会结束。你的表现取决于你今天为客户所做的事情。亚马逊云科技显然是云计算的先驱。我们于2006年推出了我们今天拥有的第一个云服务,S3存储服务。它已经17岁了。按收入计算,我们是我所见过的规模最大、利润率最高的公司。我不知道这是否属实,但我看到发布的统计数据称我们的规模可能是下一个最接近的竞争对手的两倍。但我们面临着非常激烈的竞争,而且我们才刚刚开始,我们并不比今天向客户提供的产品更好。所以比赛是永恒的。这是一个无限循环。

 记者:亚马逊云科技下一个最大的竞争对手是微软Azure。他们为独家访问OpenAI和OpenAI的模型支付了大量费用。如果要使用GPT-4,则需要签署Azure合同。我们应该这样看待这场比赛吗?该模型的独家访问权似乎已经激发了每个人的想象力。

 Adam:我们以客户为中心,从客户出发进行工作。因此,让我们通过列出为客户提供服务至关重要的三件事来回答这个问题。首先是选择和灵活性。我认为,一个模型统治所有是一个荒谬的主张。因为事实证明,同一个模型实际上并不适合一家公司的5个、10个或50个用例,更不用说有数千、数万或数百万个用例的事实。显然必须有很多选择。因此,我们希望实现这种选择。而且,时间还早,现在就像生成式人工智能的第0.1天一样,我们不知道的东西比我们已知的东西多得多。对于客户来说,能够进行试验非常重要。所以第一是选择和灵活性。

 对于任何老牌公司,尤其是企业和政府实体来说,第二点就是必须拥有安全性。安全和隐私不该被抛之脑后。但让我感到有点惊讶的是,这个领域的一些早期、最著名的进入者是通过扔掉一些东西开始的。没有安全模型,你的数据确实会通过互联网泄露。你在算法上对模型所做的任何改进都可能会返回到母舰中,并使你的竞争对手受益。然后他们回来说:“哦,等一下,将会有一个V2,那将是这个的安全版本。”

 安全不仅仅涉及功能,还是一种经营方式的哲学。如果我来到一家大型汽车公司或一家大银行,我会说:“嘿,我有一个新数据库,它真的很酷。它有很棒的功能。现在,它并不像其他所有东西一样安全,但别担心,我会让下一个版本成为安全版本。”他们会把我赶出去。实际上,他们应该这样做。

 我与至少10名财富500强CIO交谈过,这就是为什么他们禁止在其企业中使用ChatGPT。所以,你必须问自己,谁会真正认真对待这里的安全问题。

 然后,第三个东西就是此前谈到的数据。你的数据策略是生成式人工智能策略的一部分,它们不是两个独立的事物。

 那么亚马逊、亚马逊云科技是如何看待这三件事的呢?Amazon Bedrock,这是我们用于运行生成式AI模型的托管服务。亚马逊正在建立自己的模型。我们从1998年就开始做AI。亚马逊网站上的个性化就是AI。我们于2017年推出了SageMaker,这是世界上最大的机器学习平台。我们有超过10万名客户在SageMaker上进行机器学习。然后,如果你想具体讨论生成式人工智能和基础模型,亚马逊的基础模型已经在生产环境中运行了几年。部分零售网站搜索由大型语言模型提供支持。如果你看看Alexa,很多Alexa的语音响应都是由LLM提供支持的。我们在这一领域拥有大量专业知识,并将其专门用于生成人工智能。

 但是,我们还在构建我们自己的模型——扩展我们现有的模型并构建一些新模型。这些模型都将属于Titan品牌。这些Titan模型将于今年晚些时候推出。我们认为它们会很棒,而且对于很多客户来说它们的功能都非常强大。但同样,没有一种模式可以统治所有这些。

 我们还与Anthropic建立了良好的合作关系,他们的模型就在其中,而Stability AI则负责生成图像的模型。Cohere刚刚加入了Bedrock、AI21,随着时间的推移还会有其他人加入。这都是一致的API集。因此,客户很容易拥有相同类型的框架工具,然后他们只需通过调用API来使用他们想使用的模型即可。

 我们的方法是提供简单的实验和非常广泛的选择。这就是第一个概念。

 第二个是关于安全性……如果您使用Amazon Bedrock中的任何模型,它都与您的所有其他亚马逊云科技资源位于同一个隔离的私有环境中。我们将其称为VPC或虚拟私有云。因此,所有内容都是加密的,不会通过公共互联网传播。如果您想使用这些模型之一,我们基本上会在您自己的虚拟私有云中实例化该模型。因此,如果你对模型进行算法改进,他们不会回到母舰来使你的竞争对手受益。这真的很重要。

  我们已经讨论过数据平台,以及如此多的客户如何让他们的数据平台真正在亚马逊云科技上运行,这些客户需要我们拥有一套强大的生成式AI功能,因为他们知道他们的数据在哪里,还必须有他们的生成人工智能。这就是我们如何思考客户需要我们构建的能力。

 打造自研人工智能芯片

 记者:我的同事给我讲过一些故事,初创公司基本上需要亚马逊云科技的内部连接才能让他们的人工智能应用程序上线,因为芯片的瓶颈非常高。您在这里要解决的第一个问题是我们的芯片需要具有竞争力或至少与Nvidia的芯片相当吗?或者是:我们只需要购买更多的Nvidia芯片?

 Adam:我认为世界上每个人都希望有更多的芯片能够运行这些人工智能工作负载。无论你是谁,你都希望有更多。我认为,至少在短期内,需求超过供应,这一点毫无争议,对每个人来说都是如此。

 记者:这是您正在积极致力于的事情吗?世界上没有足够的计算机或芯片来应对人工智能的市场机会。这是问题所在吗?

 Adam:我们运行大量的Nvidia GPU ——同样,我们是世界上最大的、也许是最大的GPU主机之一。客户正在抢购它们,它们被称为我们的P5实例。客户现在正在生产中使用我们的P5实例。我们肯定会在未来几周和几个月内引入更多的产能。我们将继续托管大量基于GPU的实例。

 我们将成为一个非常重要的云托管服务商。此外,我们认为供应满足客户的需求非常重要,当然还要具有性价比和节能性,因此我们拥有自己设计的芯片,而不是GPU。我们之前讨论过我们的Trainium芯片,而Trainium 1已经上市一段时间了。Trainium的未来版本也可能会出现。

 记者:你把这个数字写在名字里。很容易猜测可能会有下一个数字。

 Adam:是的,完全正确。与市场上任何其他替代方案相比,Trainium为大量机器学习用例提供了出色的性价比。而且它只会不断改进。同样,对于我们所有的芯片,例如,我们的Graviton3芯片的能效比同等的基于x86的芯片高出60%。同样,对于我们用于机器学习和人工智能的Trainium和Inferentia芯片,我们将非常非常注重能耗,这对我们的客户来说确实非常重要。因此,我认为亚马逊云科技能够为我们的客户提供整个独立的供应链,这对于我们的客户来说非常有用且必要。我的意思是,你不可能只拥有一个全世界都依赖的供应链,而且可能会出现各种短缺和意想不到的事情发生。

 记者:您是否预见到这样一个世界:您选择一个模型,并将该模型与某种亚马逊专有芯片配对,从而成为差异化因素?

 Adam:这是一个很好的问题。我想说,很多模型都会选择在多个芯片上运行,并且他们这样做是有充分理由的。但我确实认为,您会看到某些模型提供商确实与亚马逊云科技等公司非常接近,并说:“嘿,让我们一起优化。让我们确保该模型既能推动芯片的改进,又能利用该芯片的独特特性。”因此,他们可能会选择不成比例地(或者在某些情况下可能完全)专注于一种芯片,因为这种专注具有显著的优势。但我也很确定您会看到很多模型在很多不同的芯片上运行。

 这就是芯片方面。我认为我们为客户提供的巨大优势,特别是那些正在构建模型的客户,是这个完全独立的供应链,这个由亚马逊设计的芯片构成的完全独立的一整套能力。所以我认为芯片是一个很大的限制。另一个很大的限制是电力。我认为众所周知,在世界上许多重要地点,计算能力的需求增长得如此之快,以至于不清楚在这些地点是否有足够的电力来为这些数据中心、服务器和芯片供电。我们正在全球范围内非常谨慎但积极地建设新的电力能力,这些地方我们认为有丰富的电力——清洁能源——因为到2025年,我们将在整个公司范围内实现100%的可再生能源,这就在不远的将来了。今天我们90%由可再生能源供电。所以我认为,在全球范围内建立整个芯片供应链,然后在美国以及其他国家的一些地方建立电力和数据中心容量,这些地方确实有意义,确实有发展前景,将成为我们提供所有这些客户所需求供应的关键。

 构建负责任的人工智能

 记者:亚马逊非常大——它只是一个非常大的公司。它涉足很多事情。最值得注意的是,它运营着一个巨大的电影工作室和流媒体服务,这些服务涉及到很多关于AI、艺术和版权法律等问题。亚马逊云科技是一些数据托管的地方。这里是一些模型被训练的地方。你作为基础设施提供商是否考虑过这个问题?有一系列关于公平使用的版权法律问题即将出现,也许Stability会因为Getty而陷入麻烦。或者Anthropic会因为Reddit数据爬取而陷入麻烦,或者未来可能发生的任何事情。作为基础设施提供商,我们有一定的责任来调解这个问题,因为我们在亚马逊云科技这边所做的事情可能会让Prime Video在那边与演员和编剧产生麻烦。

 Adam:亚马逊云科技非常关注负责任的AI和隐私以及所有伦理、监管和立法问题,这些问题都得到了适当的讨论。在亚马逊云科技,我们不会因为Prime Video或任何其他内部客户而考虑任何独特的事情,就像我们在亚马逊云科技做的其他所有事情一样,亚马逊是一个伟大的客户,一个非常大的客户,一个复杂的客户,他们经常是其他复杂企业要走向何方的很好的风向标。但他们没有特殊待遇。

 记者:我不是在谈论亚马逊本身,而是说亚马逊作为一个公司制造艺术品。这对于亚马逊这样规模的科技公司来说是非常了不起的,就像它完全投资于制造艺术品。在创意社区中引起骚动的一件事是生成式AI:谁获得数据,谁拥有数据,是否公平使用数据进行训练。然后,在亚马逊的另一侧,你正在制造使这一切成为可能的工具。我只是想知道你个人作为负责这些工具的人,是否曾经刹车并说:“我们不知道这些问题的答案。一,我们可能只是让我们在Prime Video的朋友陷入麻烦。二,更重要的是,更直接的是,我们可能正在进入一个责任世界,因为我们已经让Stability去训练Getty的图像。”

 Adam:我们不会踩刹车,但我们正在努力解决所有这些问题。一系列非常巨大和复杂的问题还处于早期阶段。这个问题不会在一夜之间得到解决,但现在就着手解决这些问题非常重要。

 顺便说一句,我们不会自己解决这个问题。我们将努力成为所有这些问题的主导声音,但从本质上讲,我们无法自己解决这个问题。我们讨论了亚马逊正在构建的Titan模型,并且我们在用于训练模型的数据方面,非常认真地对待负责任的人工智能。减少诸如毒性之类的东西。准确性非常重要,因为关于模型中的幻觉有很多适当的讨论——基本上模型给你的结果不是真实的,或者它们是编造的,但它们看起来像是真的。

 我们投入了大量的工作来最大限度地减少模型中可能发生的幻觉数量,并且还采用了各种交叉检查方法。因此,该模型可以判断它是否本质上是在编造一些东西,以便对您有所帮助。所以我认为这些模型将在准确性、毒性和适当的训练方面有一些真正的创新。其中很多内容将以积极的方式进入Amazon Bedrock。因此,我们将拥有Titan模型,但也有其他模型提供商。我们正在制作一种叫做服务卡的东西。人们一直在讨论希望了解这些模型的内容、谁训练了这些模型以及使用了哪些类型的数据。

 因此,我们正在为每个模型制作这些服务卡,并且我们希望为Bedrock内部的所有模型提供这些服务卡,它将提供有关该模型是什么的基本基本信息,并且至少在高级别上,使用什么类型的数据来训练它以及它的预期用途和限制是什么。我并不认为这会解决透明度、解决可见性问题,但至少在2023年,这是我们朝着正确方向迈出的一步。然后,在立法和监管方面,我认为我们需要成为许多重要声音之一。我们花了很多时间与政府、议员、欧洲和世界其他国家的类似机构打交道。

 记者:您认为这对您来说更像是一个应用程序商店模式吗?那么,您是否检查过以确保Meta的模型不会以比其他人更高的速度产生幻觉?

 Adam:我们不能那样做。我们不拥有该模型。因此,如果客户过来说:“嘿,SageMaker是一个很棒的机器学习平台,我们希望在SageMaker中运行LLaMA。”我们不会说不,我们也不会成为LLaMA的世界专家。我们将对我们的模型负责。归根结底,模型提供商需要承担责任。政府需要决定在多大程度上希望立法规定其责任。并且需要提供可见性,以便潜在客户可以决定这些模型是否适合他们。

 记者:如果你通过了一项法律,规定模型不能做X,我们必须弄清楚谁来执行这一点。答案之一是像亚马逊云科技这样的基础设施提供商,对吗?

 Adam:我们有一个可接受的使用政策。当发生一些重要的事情时,我们会决定改变它。我们不经常这样做,但这是一个不断发展的事情。我们执行它,其中包括人工智能。因此,如果我们明天需要更改与人工智能相关的内容,我们明天就会更改。人工智能将具有独特的特征,但本质上并没有不同。但我认为政府会决定模型的一定规模或复杂程度。

 人们正在谈论前沿模型。也许我们必须确保它们经过了独立的毒性测试和红队测试之类的测试。我们非常重视这样的事情。例如,CodeWhisperer是我们构建的一个很棒的编码助手。你输入单词,它会给你返回代码。这太神奇了。但是在代码中,我们构建了自动能力,使模型能够告诉你,如果你使用开源代码之类的东西,可能正在使用的开源代码的许可条款和治理是什么,以及过滤掉任何与毒性有关的东西。因此,对于我们控制的服务,我们非常认真地对待它,并尝试构建这些控件,这些控件不仅在伦理上很重要,而且在许多情况下在法律上也很重要,对于我们的客户来说也是如此。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值