从零开始学diffusion modles

基本名词概念:

  • ground truth
  • 噪声:指数据中的随机误差或干扰,它会影响模型的训练和预测结果。噪声可以来自多个方面,如数据收集过程中的测量误差、传感器噪声、数据传输和存储引入的噪声等。了解和处理噪声对于建立准确的模型和取得良好的预测结果至关重要。
  • 马尔可夫链:为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
  • 马尔可夫链 ▏小白都能看懂的马尔可夫链详解
  • Embedding: 一种将现实世界的对象和关系表示为向量的密集数值表示形式,可以用于准确地将稀疏数据(如点击流、文本和电子商务购买)表示为下游模型的特征。
  • 卷积:
    在数学中,卷积的定义是通过积分来计算的,表示为:

    这个公式描述了一个函数f与另一个函数g的卷积。直观上来说,卷积可以看作是在其中一个函数上滑动另一个函数,并在每个位置上进行乘法和积分操作。

        在机器学习中,特别是在卷积神经网络(CNN)中,卷积通常用于处理图像数据。在这里,
卷积是通过将一个小的卷积核滑动到输入图像上,然后计算卷积核与图像局部区域的元素乘积之和。这个过程用于提取图像的局部特征,例如边缘、纹理等。

卷积的计算结果可以利于特征提取,模式识别等。

Diffusion models:

Diffusion模型的训练分为两部分:

1.前向扩散过程(Forward Diffusion Process) → 图片中添加噪声

2.反向扩散过程(Reverse Diffusion Process) → 去除图片中的噪声

参考资料:

十分钟读懂Diffusion:图解Diffusion扩散模型(讲的很全面且补充了很多前置知识,但是具体内容比较简要)

由浅入深了解Diffusion Model(讲的很详细,有具体过程和详细的公式推导,看不懂是我的问题)

Diffusion Model代码实践(一个本子-AI实验室,里面既有前置知识的普及,又有入门学习和深入学习两个理论基础讲解,还有很详细的代码实践教程,五星好评

### 构建扩散模型的基础概念 扩散模型是一种强大的生成模型,通过逐步向数据添加噪声并习逆转这一过程来工作。对于初者来说,理解扩散模型的工作原理至关重要[^1]。 ### 所需的技术栈和工具包 为了从零开始构建扩散模型,Python编程语言及其丰富的机器学习库是必不可少的选择。具体而言: - **PyTorch/TensorFlow**: 这些框架提供了必要的API用于定义神经网络架构以及执行自动微分操作。 - **NumPy/SciPy**: 对于处理数值计算非常有用。 - **Matplotlib/seaborn**: 可视化训练进度和结果的重要工具。 ### 数据准备 高质量的数据集对于任何深度习项目都是至关重要的。当涉及到图像生成任务时,可以考虑使用公开可用的大规模图片集合如CIFAR-10、ImageNet等作为起点。 ### 模型设计与实现 #### 自编码器部分 自编码器负责将原始输入映射到较低维度的空间(即潜在空间)。这一步骤有助于减少后续去噪过程中所需的时间成本和技术难度。 ```python import torch.nn as nn class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() # Encoder layers... # Decoder layers... def forward(self, x): encoded = ... # Implement encoding process here. decoded = ... # Implement decoding process here. return decoded ``` #### UNet结构的去噪器 UNet因其出色的特征捕捉能力而被广泛应用于各种计算机视觉任务中,在此背景下它同样适用于去除加性高斯白噪音的任务。 ```python from torchvision import models def get_unet_model(): unet = models.segmentation.unet_vgg16_bn(pretrained=False).features # Modify the architecture according to your needs or implement custom U-net structure. return unet ``` ### 训练流程概述 整个训练分为两个主要阶段:首先是预训练好的自编码器;其次是利用该自编码器产生的潜在表示来进行改进版U-net的监督式习。在此期间,会采用一系列精心挑选出来的损失函数来指导参数更新方向。 ### 资源推荐 对于想要深入了解扩散模型理论基础的习者来说,《Deep Learning》一书中的相关内容值得阅读。此外,GitHub上也有许多开源项目可供参考实践,例如OpenAI发布的`Denoising Diffusion Probabilistic Models (DDPM)`代码仓库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值