NGS推动精准肿瘤学发展

下一代测序:从传统应用到突破性基因组分析和精准肿瘤学

引言

基因组分析在健康与疾病中的有效性、准确性以及成本的降低[1,2]及其在ENCODE项目中的成功整合[3]彻底改变了生命科学。在主要复杂疾病(包括神经发育与退行性疾病、精神疾病综合征,尤其是癌症)的研究进展一直较为缓慢。

下一代测序(NGS)技术应用从静态、传统、单次活检 NGS向动态、突破性、多次活检分析的快速发展,实现了对时间和空间中基因组克隆演化的评估,为精准医学奠定了基础[4]。传统NGS指的是在单一时间点进行的单活检分析,而突破性NGS则包括对原发性肿瘤的多区域分析以识别肿瘤内异质性(ITH),以及利用循环游离DNA(cfDNA)进行连续液体活检分析,并随后进行NGS检测(cf DNA‐NGS)。本文总结了将NGS整合到合理设计的研究中的潜力与挑战,以实现预测性、预防性和治疗性的临床意义。

常见复杂性疾病仍然是一个未解决的健康问题。在某些情况下,例如心血管疾病,预防方面已取得显著进展,但这些患者的管理需要终身治疗和强化随访[5]。其他疾病,如神经发育和神经退行性疾病、精神分裂症和癌症,仍然无法治愈,缺乏早期准确诊断手段以及有效疗法,并且患者生活质量差。

随后人们认识到,如果不了解这些复杂疾病背后的种系和/或体细胞突变景观,以及基因组结构变异如何影响分子网络、基因表达谱、转录和翻译,就永远不会在治愈方面取得重大进展。

过去十年中,下一代测序平台的快速发展及其在组织和液体活检中识别遗传和基因组畸变的前所未有的潜力,使得这些基因组分析成为精准诊断和个体化治疗最准确的工具。

下一代测序技术与生命科学的革命

过去十年中,下一代测序(NGS)系统已整合到基础转化和临床研究中,而近期靶向下一代测序(tNGS)的临床应用已成为实现精准癌症医学最有前景的策略[4,6]并随之显著改善公共卫生和个体化患者管理。

40年前桑格测序的引入为生物医学研究带来了革命,而随着下一代测序(NGS)技术的发展,这一革命已达到新的高度。相较于桑格法,NGS成本持续下降,同时具备高速度和高准确性,使得下一代测序仪被广泛应用于科研甚至临床领域。目前多家竞争企业提供了各自的NGS技术,例如罗氏、因美纳和赛默飞世尔科技。一些测序仪,包括因美纳的 HiSeq系列尤其是HiSeq 2500、3000和4000,Ion Proton(Ion Torrent),Roche的SeqCap EZ,以及牛津纳米孔技术公司的PromethION,能够快速且可靠地扫描全外显子组或全基因组;而其他如Ion PGM(IonTorrent)和MiSeq(因美纳)则仅适用于已知基因面板的靶向测序。

此外,部分测序设备可对部分或完整的转录组进行测序,例如因美纳的NextSeq、HiSeq和NovaSeq系列,以及Ion Proton系统[7,8]。近年来,连续的循环游离DNA测序( cfDNA‐NGS)为患者监测以及识别可能导致肿瘤复发的循环亚克隆提供了可能。

基因组医学中的癌症基因组分析与下一代测序

精准医学有望显著改善临床护理,遗传学已越来越多地用于指导临床决策。下一代测序平台的广泛市场可及性和高准确性促进了测序技术在患者护理中的应用。尽管下一代测序的临床意义涵盖多种常见的重大复杂疾病,包括神经发育和神经退行性疾病、心血管疾病、代谢综合征、免疫系统疾病和精神疾病综合征[9],目前,下一代测序研究的兴趣已转向癌症基因组分析。肿瘤样本的可获得性使得能够分析配对癌‐正常组织,包括广泛使用传统的单活检静态NGS方法,以及突破性的动态多活检基因组分析[10]。

尤其在实体瘤中,原发性肿瘤的可获取性及其进行全面分子探索的潜力,结合不同时间点对循环游离DNA( cfDNA)的重复DNA分析以识别循环基因组亚克隆(c GSs),带来了前所未有的临床意义。两大主要癌症基因组项目致力于研究癌症驱动基因,旨在完成各类癌症相应的基因和突变目录 [11,12]。具体而言,通过对多区域活检样本和连续cfDNA样本进行下一代测序(NGS)分析,分别识别肿瘤内异质性(ITH)和循环基因组亚克隆(cGSs),正在开启针对个体患者中不同肿瘤细胞亚群的联合治疗新纪元。

下一代测序技术在2006年实现市场可用后,首次被应用于ENCODE项目[3],。测序系统在基础研究中的应用彻底改变了生命科学,确立了非编码基因组功能的概念,并否定了过去用来描述占整个基因组98%的非编码基因组的“垃圾 DNA”这一术语。此外,整合蛋白质编码基因表达谱以描绘调控、分子及基因‐基因相互作用网络,为实现精准医学 [13,14]开辟了新的途径。

将下一代测序(NGS)成功整合到ENCODE国际多中心联盟中,促成了2011年首批针对患者来源的临床样本进行分析的小规模NGS研究的发表,旨在实现个体化医学[15]。

自那时以来,进展显著,尤其是在NGS将基础研究发现转化为临床意义的有效性方面。尽管靶向下一代测序(tNGS)因其能够检测已知的癌症相关基因及其临床效用而广受赞誉,但基于基因突变、扩增、基因融合及其他畸变发现新基因和新的治疗靶点,仍需开展大规模临床基因组学研究以获得可靠结果[10]。近年来,通过大规模全外显子组测序(WES) [10]和全基因组测序(WGS)研究,已在乳腺[16], 、肝脏 [17],和胰腺癌[18]中成功鉴定出新的癌症驱动基因和可靶向的基因突变。

除了完成与肿瘤发生相关的基因列表和发现新的致癌靶点之外,基于传统的单活检策略进行下一代测序分析,显然无法实现对内在和获得性耐药性的理解与克服,以及对疾病复发的预测和潜在预防。

目前最大的挑战是克服原发性和获得性治疗耐药性。近期密集的研究集中在两个主要方面来解释肿瘤的无反应性。

第一个是评估原发性肿瘤的肿瘤内异质性。

新的多区域活检方法结合下一代测序旨在通过联合使用靶向药物对原发性肿瘤内的不同基因组亚克隆进行治疗靶向[19]。

第二个是液体活检的基因组分析。由个体患者无创基因组分析带来的技术革命,在提高治疗反应的个体化治疗以及完成治疗方案后的患者监测领域都带来了高度期望。

未来展望与结论

在辅助治疗环境中,克服治疗耐药性、延长复发时间,甚至防止复发,从而显著延长总生存期,仍然是尚未解决的问题。

研究人员和临床医生有一个共同的梦想,即在抗击癌症的斗争中实现这些目标,而创新的下一代测序方法的应用则成为实现精准癌症医学的一个极具说服力且现实可行的未来方向。

同一疾病患者之间广泛的基因组异质性凸显了开展大规模临床研究以实现统计学显著性(p< 0.01)的必要性[10]。

事实上,下一代测序技术与生物信息学的快速发展使得大规模基因组研究得以实施,包括Nik‐Zainal等人对560名乳腺癌患者和Fujimoto等人对300名肝癌患者分别开展的全基因组测序研究,以及Bailey和Humphris及其同事开展的两项胰腺癌大型研究,分别对总共383名和385名参与者应用了全外显子组测序或全基因组测序,其中第一项研究还同时实施了RNA测序。上述研究取得了极具前景的成果,展示了在新突变和致癌靶点发现以及所研究疾病的分子分类方面的重大进展。最近,有三个令人振奋的项目联合因美纳共同设计,旨在加速癌症诊断与治疗领域的癌症研究并产生临床意义。

英国基因组学最终目标是完成10万份样本的测序,最新报告中已有超过16,000份样本被分析。此外,美国还有两个规模更大的合作项目——由国家癌症研究所发起的癌症登月计划和由美国国立卫生研究院发起的精准医学计划,计划对多达100万名志愿者的样本进行测序,以识别新的生物标志物,研究环境影响对健康与疾病的作用,并开发新型靶向药物 [21]。

关于癌症进化过程中基因组动态的最新证据,正在塑造肿瘤异质性在时空上出现以及通过循环基因组片段(cGSs)向远端器官扩散的新时代[19]。这一提出的癌症转移基本原理现在可以通过两种创新方法进行系统探索。首先,利用靶向下一代测序(tNGS)、全外显子组测序(WES)或全基因组测序(WGS)对原发性肿瘤进行多区域分析,可通过已知的tNGS或新的基因(WES、WGS),在设计合理的大型研究中识别其中的亚克隆。对肿瘤内异质性(ITH)的评估有望推动新型组合疗法,靶向全面的肿瘤多样性[22]。

其次,在个体患者治疗前、治疗中及治疗结束后,对血浆游离DNA进行DNA分析,可评估肿瘤组织及循环系统中的基因组多样性[23]。新兴及未来研究的创新设计将肿瘤内异质性与连续血浆采样相结合用于克隆演化特征识别,首次为预测并降低原发性和继发性治疗耐药的发生率,以及预测并可能预防疾病复发提供了可能性。

总之,临床高通量测序研究的传统方法和突破性方法均展现出前所未有的临床意义。传统的、静态的、基于单次活检的高通量测序分析可通过有效识别新的可靶向突变,扩大已批准的靶向药物列表。另一方面,通过突破性高通量测序应用评估耐药亚克隆的时空出现,有望彻底改变当前的研究策略,以克服治疗耐药性,预测复发,并显著延长个体患者的无复发生存时间。

在“天池平台二手车交易价值评估竞赛”这一数据科学任务中,参与者需构建预测模型以估算二手车辆的市场成交价。此类赛事属于机器学习与数据分析领域的典型应用场景,旨在系统提升参赛者的特征构建、模型优化及结果验证能力。下文将分模块阐述关键技术要点: 1. 数据清洗与规整 原始数据集需经过系统处理,包括填补空缺数值、识别离群观测、剔除冗余字段,并将分类变量编码为模型可读的数值形式。此阶段质量直接影响后续建模效果。 2. 特征构建与筛选 需从原始字段中提炼有效预测因子,包括但不限于车辆制造厂商、出厂年份、行驶总里程、外观配色及动力系统配置。基于领域常识可衍生新特征,例如车龄换算、年均行驶强度指数等。 3. 数据分布探查 通过统计图表分析变量间关联规律,例如采用趋势线观察里程数与价格的相关性,使用分位数图示不同品牌的价格区间分布特征。 4. 算法模型选型 常用预测架构包括线性回归模型、树型决策结构、集成学习方法(如随机森林、XGBoost、LightGBM)、支持向量机及深度学习网络。需根据数据特性与计算资源进行综合选择。 5. 参数优化流程 采用K折交叉验证评估模型稳定性,配合网格搜索或随机搜索策略进行超参数调优,以最大化模型预测精度。 6. 集成策略应用 通过Bagging、Boosting或堆叠融合等技术整合多个基模型,通常能获得超越单一模型的表现。 7. 性能度量标准 预测任务常用评估指标包括均方误差、平均绝对误差、均方根误差及决定系数。不同业务场景需针对性选择评估体系。 8. 结果输出规范 最终预测结果需按赛事要求整理为特定结构的数据文件,通常包含样本标识符与对应价格预测值两列。 9. 时序特征处理 当数据包含交易时间维度时,需引入时间序列分析方法(如季节性分解、循环神经网络)捕捉市场波动规律。 10. 工程实践规范 采用Git进行版本追踪,通过模块化编程提升代码可维护性,建立标准化实验记录体系。 该竞赛全面覆盖数据预处理、特征工程、模型构建与验证等核心环节,同时强调工程化实施规范,既能强化技术理论认知,又可培养实际业务场景的问题解决能力。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值