用模式串构造Trie树..用Trie树构造AC自动机...用AC自动机构造Trie图...为了在一个Trie图中能同时处理overlap 和 not overlap的情况..每个节点就要有两个计数器..
overlap的计数器point[h].w[0]很好处理...就是普通的Trie图遍历目标串..到达一个点h..其point[h].w[0]++并且其所有Fail到0的点的w[0]都++...
而对于not overlap的情况..是同样Trie图遍历目标串..但在更新point[h].w[1]时为了避免重叠覆盖...对于每个点h,从根节点到当前点的长度用point[h].length记录..最近一次更新point[h].w[1]时扫到目标串的位置用point[h].last记录...只有当 i-point[h].last>=point[h].length 时才让point[h].w[1]++并且更新point[h].last为i...这样就保证了每次更新point[h].w[1]时不会出现重叠的部分.
Segmentation Fault 了很多次...就是因为节点数开少了...仔细看题才发现题目给的空间是126M...囧..
Program:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
#define oo 1000000000
using namespace std;
struct node
{
int son[26],fail,w[2],last,length;
}point[600005];
char s[100005],str[10];
int t[100005],a[100005];
queue<int> myqueue;
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int T,i,j,n,len,h,num,k;
T=0;
while (~scanf("%s",s))
{
// if (T) printf("\n");
T++;
scanf("%d",&n);
num=1;
memset(point[0].son,0,sizeof(point[0].son));
point[0].last=-oo;
point[0].length=0;
point[0].w[0]=point[0].w[1]=0;
for (j=1;j<=n;j++)
{
scanf("%d%s",&t[j],&str);
len=strlen(str);
h=0;
for (i=0;i<len;i++)
{
if (!point[h].son[str[i]-'a'])
{
point[h].son[str[i]-'a']=++num;
memset(point[num].son,0,sizeof(point[num].son));
point[num].last=-oo;
point[num].length=point[h].length+1;
point[num].w[0]=point[num].w[1]=0;
}
h=point[h].son[str[i]-'a'];
}
a[j]=h;
}
while (!myqueue.empty()) myqueue.pop();
point[0].fail=0;
for (i=0;i<26;i++)
{
point[point[0].son[i]].fail=0;
if (point[0].son[i]) myqueue.push(point[0].son[i]);
}
while (!myqueue.empty())
{
h=myqueue.front();
myqueue.pop();
for (i=0;i<26;i++)
{
k=point[h].fail;
while (k && !point[k].son[i]) k=point[k].fail;
point[point[h].son[i]].fail=point[k].son[i];
if (point[h].son[i])
myqueue.push(point[h].son[i]);
else
point[h].son[i]=point[k].son[i];
}
}
len=strlen(s);
h=0;
for (i=0;i<len;i++)
{
h=point[h].son[s[i]-'a'];
k=h;
while (k)
{
point[k].w[0]++;
if (i-point[k].last>=point[k].length)
{
point[k].w[1]++;
point[k].last=i;
}
k=point[k].fail;
}
}
printf("Case %d\n",T);
for (i=1;i<=n;i++) printf("%d\n",point[a[i]].w[t[i]]);
printf("\n");
}
return 0;
}