【LeetCode & 剑指offer刷题】数组题16:51 数组中的逆序对
【LeetCode & 剑指offer 刷题笔记】目录(持续更新中...)
51 数组中的逆序对
题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1
输入
复制
1,2,3,4,5,6,7,0
输出
复制
7 (
指静态下构成的逆序对,而非任意组合构成的逆序对,如这里只有1,0 2,0...而没有2,1
)
思路:
(1)暴力法:遍历数组,比较某元素与所有后面元素是否构成逆序对,O(n^2)
(2)
归并排序法:将数组递归分解为两个个子数组,在子数组内部排序,
统计有序子数组之间的逆序对情况(由于分割的子数组有左右关系,故可行),并归并有序子数组....O(nlogn),O(n),(空间换时间)
class
Solution
{
private
:
long
result
; //结果变量
public
:
int
InversePairs
(
vector
<
int
>
data
)
{
result
=
0
;
//初始化
if
(
data
.
empty
())
return
0
;
mergeSort
(
data
,
0
,
data
.
size
()-
1
);
//按从大到小归并排序,并统计逆序对个数
return
result
%
1000000007
;
//取模输出,防止输出太大
}
private
:
void
mergeSort
(
vector
<
int
>&
a
,
int
begin
,
int
end
)
{
if
(
begin
>=
end
)
return
;
//递归的出口
int
mid
=
(
begin
+
end
)
/
2
;
mergeSort
(
a
,
begin
,
mid
);
//左子数组排序
mergeSort
(
a
,
mid
+
1
,
end
);
//右子数组排序
merge
(
a
,
begin
,
mid
,
end
);
//归并有序数组
}
void
merge
(
vector
<
int
>&
a
,
int
begin
,
int
mid
,
int
end
)
{
vector
<
int
>
temp
(
end
-
begin
+
1
);
//开辟临时数组
int
i
=
begin
,
j
=
mid
+
1
,
k
=
0
;
//左子数组、右子数组、临时数组起始索引
while
(
i
<=
mid
&&
j
<=
end
)
//注意范围
{
if
(
a
[
i
]
>
a
[
j
])
{
temp
[
k
++]
=
a
[
i
++];
//这里从大到小排序,方便判断逆序对
//合并的是有序子数组(从大到小),故a[i]>a[j]时,也有a[i]>a[j]~a[end],均可构成逆序对(a[i]在左边,a[j]在右边)
result
+= end - j + 1;
}
else
temp
[
k
++]
=
a
[
j
++];
}
while
(
i
<=
mid
)
temp
[
k
++]
=
a
[
i
++];
//复制剩余元素
while
(
j
<=
end
)
temp
[
k
++]
=
a
[
j
++];
for
(
int
i
=
begin
,
k
=
0
;
i
<=
end
&&
k
<
temp
.
size
();
i
++,
k
++)
//复制临时数组元素到原数组
{
a
[
i
]
=
temp
[
k
];
}
}
};