图像处理算法之Gamma校正优化一

1 前言

接着上一篇Gamma校正,对于一般的偏暗或者偏亮的图片,可以处理的不错。但是如果图像上出现部分偏亮或者部分偏暗,或者图像在时序上会有亮变暗,环境不定。这时候需要做自适应的gamma矫正,就是需要对暗的部分增亮,对亮的部分拉暗,而不是全图使用同样的gamma值。

了解下方案一:
论文Local colour correction using nonlinear masking

2 论文原理

1)公式如下:
f ( I ) = I γ f(I) = I ^ γ f(I)=Iγ
γ = 2 128 − m a s k 128 γ = {2^{\dfrac{128-mask}{128}}} γ=2128128mask

2)步骤:
2-1)将RGB图像转化为灰度图像。
2-2)将灰度图像取反。
2-3)用大半径滤波器将取反的灰度图像模糊得到mask。

模糊半径将影响mask效果
在这里插入图片描述

用灰度图像来计算是为避免色度通道发生失真。
图像取反是因为暗区需要更大的mask来提升亮度,而亮区需要小的mask来压制亮度。
图像模糊是为防止图像特征被识别。
如果图像未模糊,那么图像的对比度会急剧下降,
如果图像过模糊,那么算法将退化成简单的gamma校正。
这一计算过程可以用小图计算加速。

ps:可以看出整个过程是为了得到一个动态的gamma值,而不是上一篇中固定的gamma值,每个像素都会有一个自己的gamma值。更正一下,由于gamma是浮点数,此处不适合查表,对于小图,计算量会小很多。

当mask>128时,指数<1,输出像素值将比输入像素值大,图像会被增亮。
当mask<128时,指数>1,输出像素值将比输入像素值小,图像会被拉暗。

用曲线可以将输入,mask与输出的关系表示如下。
在这里插入图片描述

3 效果

在这里插入图片描述

ps: 从左到右,分别是原图,Gamma校正图,论文算法校正图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值