AIzealot无
码龄2年
关注
提问 私信
  • 博客:52,275
    问答:15
    52,290
    总访问量
  • 94
    原创
  • 19,725
    排名
  • 690
    粉丝
  • 23
    铁粉
  • 学习成就

个人简介:专攻AI相关内容,目前聚焦于医学图像处理以及AIGC。 目前交叉学科渣硕一枚。 欢迎关注博主一起学习AI领域的相关知识,不定期会进行论文解读和算法题整理以及视觉方向算法的核心面经总结。 也曾有一天,你屹立世界之巅,为大千宇宙中最闪亮的星,世界再无阴霾,阳光明媚。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 毕业院校: 清华大学
  • 加入CSDN时间: 2022-07-17
博客简介:

m0_72806612的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    668
    当月
    58
个人成就
  • 获得639次点赞
  • 内容获得35次评论
  • 获得546次收藏
创作历程
  • 60篇
    2024年
  • 36篇
    2023年
成就勋章
TA的专栏
  • 跟无神读视觉论文
    8篇
  • 算法岗核心技术面经合集(无神版)
    1篇
  • 跟无神学AI
    43篇
  • 跟无神刷算法题系列
  • 程序猿的基本素养
    13篇
  • 跟无神学Tensorflow
    1篇
  • 跟无神学生信
    8篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    数据挖掘计算机视觉机器学习人工智能深度学习
  • 软件工程
    github软件工程
  • 前沿技术
    c++20
  • 开源
    github开源开放原子
  • 其他
    经验分享笔记
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文解读之SDXL: Improving Latent Diffusion Models forHigh-Resolution Image Synthesis

SDXL是SD的改进版本,采用了三倍更大的Unet主干网络(其增大的参数主要由于更多的注意力块和使用第二个文本编码器带来的更大的交叉注意力机制的内容)设计了多个新的限制方案,并且在多个比例上进行了训练。引进了一个完善模型——用来改善采样结果的真实性。
原创
发布博客 2024.11.10 ·
268 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

论文解读之mask2former

这是一个能够执行三大分割通用任务(语义、实例、全景)的网络第一次在三大任务上胜过每个任务的专用分割SOTA模型。
原创
发布博客 2024.11.08 ·
953 阅读 ·
16 点赞 ·
0 评论 ·
11 收藏

Python深浅拷贝及实现

在Python中,深浅拷贝是数据复制的两种方式。浅拷贝复制的是对象的引用,深拷贝则完全复制对象的值。print(shallow_copy) # 输出: [1, 2, ['changed', 4]]print(deep_copy) # 输出: [1, 2, [3, 4]]浅拷贝只复制对象的引用,而深拷贝复制了整个对象及其嵌套对象。
原创
发布博客 2024.11.07 ·
192 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

自然常数e的来源和为什么选择e作为交叉熵损失函数的底数

‌:在信息论中,信息量的定义通常使用自然对数。自然对数的底数e是一个重要的数学常数,约等于2.71828。使用自然对数可以更好地反映信息的本质,因为自然对数在信息论中有其独特的性质和优势‌12。‌。
转载
发布博客 2024.11.07 ·
17 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

重装linux系统(ubuntu)后使用Mount挂载原数据盘过程

第二,使用sudo fdisk -l。如mkdir /data_sda。第三,使用mount命令挂载,如。将sda挂载在data_sda下。查看未挂载的数据盘信息。
原创
发布博客 2024.11.05 ·
107 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

DDPM的Diffusion过程的代码实现

return x_t转自加噪过程的代码实现。
转载
发布博客 2024.11.03 ·
8 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文解读之Image2image-turbo

image2image-turbo作为一个使用CycleGAN形式进行训练的图生图Diffusion的网络,主要解决了两方面条件扩散模型的显存局限性:1.由于迭代去噪过程而很慢的推理速度2.依赖成对数据的模型微调。
原创
发布博客 2024.11.01 ·
263 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

论文解读之High-Resolution Image Synthesis with Latent Diffusion Models(Stable Diffusion)

本文是Stable Diffusion等一系列扩散模型的里程碑,主要解决的问题是Diffusion模型在原始的像素空间中需要的计算资源过多的问题。
原创
发布博客 2024.10.29 ·
733 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

huggingface设置国内镜像源以及登陆之后下载模型示例

有一些较大的模型权重直接去官网下很不方便,所以找了一下设置国内镜像源并设置token登陆的方法。一般开开权限的库可以随便下载,没开开的先去库里面填个表申请,一般提交以后秒获得库的权限。后面是下载的地址,好处是这种方式可以在断掉之后用缓存接着下载。前面是设置国内镜像源,否则可能出现网络问题。1.去官网设置自己账号的token。具体在这里添加,将所有权限都开开。
原创
发布博客 2024.10.27 ·
273 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

libavdevice.so.58: cannot open shared object file: No such file ordirectory踩坑

二、ImportError: /lib/x86_64-linux-gnu/libgobject-2.0.so.0: undefined symbol: ffi_type_uint32, version LIBFFI_BASE_7.0。产生原因,各种包集成,然后安装以后乱七八糟,甚至官方的教程也不规范导致没有添加路径到系统文件导致系统执行的时候找不到。问题一、linux编译后,找不到ffmpeg中的一个文件。博主进行的离线安装,分别下载yums\ffmpeg。博主是将大图切分成小图时遇到。
原创
发布博客 2024.10.25 ·
714 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Docker加载并运行别人的容器的同时挂在本地其他文件

正确示范:sudo docker run -it --name hunyuandit12new --gpus all --init --net=host --uts=host --ipc=host --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 -v /home/xuyimeng_aixym:/workspace mirrors.tencent.com/neowywang/hunyua。
原创
发布博客 2024.10.24 ·
570 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

ImportError: cannot import name ‘cached_download‘ from ‘huggingface_hub‘踩坑记

追溯以上的包的调用信息,挨个将diffusers、huggingface卸载然后升级最新版。一般遇到这种导入模块没有,或者是检查某一个文件中的哪些配置不正确。
原创
发布博客 2024.10.18 ·
4161 阅读 ·
9 点赞 ·
5 评论 ·
2 收藏

较新(24.3)加速Diffusion模型推理的方法,附带参考文献

2.将原来的扩散模型作为教师,蒸馏到更快的少步学生网络。3.一些采用一致性模型训练。4.改用GAN做生成。
原创
发布博客 2024.10.18 ·
464 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

Variational Auto-Encoder(VAE)缺少数学推导未完结版

VAE(变量自编码器)最早在以上两篇文章被提出。VAE与自编码器类似包括从原始的数据将其编码到潜在空间(隐藏表示空间,维度更低)中的变量z、以及将变量z还原到原来的空间x的解码器,不同的是,它是对分布的均值和标准差进行估计。
原创
发布博客 2024.10.13 ·
305 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

无神论文解读之ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models

ControlNet是一种能够控制模型生成内容的方法,能够对文生图等模型添加限制信息(边缘、深度图、法向量图、姿势点图等),在当今生成比较火的时代很流行。这种方法使得能够直接提供空间信息控制图片以更细粒度地得到想要的生成图片,这种方法能够以一个端到端的方式来实现这个挑战。先看看其主要方法,将原先的预训练网络冻结,然后做一个可训练的复制,再使用0初始化的1*1卷积( 保证开始训练时没有额外噪声加入进来)将这个复制的网络连成一个支路。
原创
发布博客 2024.10.05 ·
546 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

onnxruntime/capi/onnxruntime_inference_collection.py:54: UserWarning: provider ‘CUDAExecutionProvide

2.直接pip安装(最快),如:pip install onnxruntime_gpu==1.12.1,如果原来镜像源里面没有,加-i 这两个就可以找到https://pypi.org/simple, https://pypi.ngc.nvidia.com。反面教材:按照某些博主的说法重装了Conda中集成的CUDAtoolkit无效,甚至让我到了想要重装CUdNN的地步。原因:安装的不是GPU版本,所以模型在CPU上跑会很慢很慢。1.去网站找对应平台的GPU版本。
原创
发布博客 2024.10.02 ·
286 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

error -- unsupported GNU version gcc later than 10 are not supported;(gcc、g++)

没有合适的版本的话需要root权限指定版本安装。备案,以后有人要用12我还得换回来。方案一:更改gcc和gcc+的版本。想了下是系统找不到编译器。
原创
发布博客 2024.09.22 ·
568 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

表示学习和自编码器(autoencoder)

其学习到的表示往往比手动设计的表示表现更优,而且只需要最少的人工干预,就能让AI模型更好适应新的任务。编码器函数将输入数据转换为一种不同的表示,而解码器函数则将这个新的表示转换为原来输入的形式。对于许多机器学习任务来说,很难知道应该提取哪些特征,比如——想要写代码检测图片中的某一个器官,然而,这个器官会随着场景的变化有各种形态。这些因素通常不是能够被直接观察到的量,但是却是影响可观测的量。设计自编码器的目的在于:使输入数据在经过编码器和解码器之后尽可能多地保留信息,同时希望新的表示有各种好的特性。
原创
发布博客 2024.08.12 ·
218 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

#旷视 2025秋季校园招聘正式启动啦!

链接:https://mp.weixin.qq.com/s/B3PU2jtQ-1FrEv1W7JmONA。#旷视 2025秋季校园招聘正式启动啦!✅算法、研发技术、产品/解决方案、交付!📣超多选择在旷视,期待你的火线加入!✅北京、上海、成都、重庆、武汉!【五大城市】向你发出应聘邀请。内推码:DSXwkAST。【四大岗位】开放投递。
原创
发布博客 2024.08.08 ·
417 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

论文解读之Hunyuan-DiT

Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding。
原创
发布博客 2024.07.28 ·
245 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏
加载更多