- 博客(329)
- 资源 (32)
- 收藏
- 关注
原创 DB31/T 1552-2025《居民电子健康档案应用系统等级评估指南》:上海地方标准全面解析
《居民电子健康档案应用系统等级评估指南》是一项具有重要战略意义和实践价值的地方标准。其实施将推动医院在居民健康信息管理方面进行全面升级和转型,提升健康信息的质量、安全性和利用效率,为居民提供更加便捷、高效的健康服务。医院需要充分认识标准的重要性和影响,积极应对,做好准备,确保标准的顺利实施。
2025-05-20 08:39:07
201
5
原创 DB31/T 1545—2025《卫生健康数据分类分级要求》上海地方标准全面解析与未来对医院数据管理以及数据编程影响
国家层面数据分类分级标准的不断完善,医疗数据安全治理的智能化升级,数据要素市场的规范化建设,以及医疗数据安全国际化的探索,DB31/T 1545—2025《卫生健康数据分类分级要求》将发挥越来越重要的作用,为医疗机构数据安全管理和数据价值释放提供重要支撑,为健康医疗信息化建设贡献力量。
2025-05-19 09:15:24
700
13
原创 远程医疗结合贴肤芯片技术对体育院校学生提升运动表现的路径分析
远程医疗与贴肤芯片技术的结合为体育院校学生运动功能的优化提供了创新路径。该技术通过多模态传感融合、边缘计算优化和自适应传输协议,实现对学生运动状态的实时监测与分析。多模态传感融合集成了多种微型传感器,如肌电信号、皮肤阻抗、关节运动角度等,全方位监测运动状态。边缘计算优化通过轻量化AI芯片实现数据处理,提高系统响应速度和隐私保护能力。自适应传输协议则确保数据的可靠传输和低延迟。这些技术手段共同构建了一个完整的远程医疗贴肤芯片系统,为运动功能的科学优化提供了有力支撑,具有广阔的应用前景和深远的实践意义。
2025-05-19 08:15:06
425
4
原创 无监督学习在医疗AI领域的前沿:多模态整合、疾病亚型发现与异常检测
无监督学习技术在医疗AI领域的应用在2025年取得了显著进展,主要体现在多模态整合、疾病亚型发现、异常检测等方面。哈佛大学开发的TANGLE框架通过基因表达与病理切片的跨模态对比学习,提升了计算病理学分析能力。HEST-1k数据集为多模态无监督学习提供了大规模基准平台。谷歌的REGLE模型从高维临床数据中提取低维表征,成功发现基因变异与临床特征的联系。在疾病亚型发现方面,自编码器技术识别出糖尿病的4种代谢亚型,PANTHER框架揭示了结直肠癌的肿瘤异质性。t-SNE算法在药物分子筛选中的应用加速了新药发现。
2025-05-17 19:47:06
646
47
原创 强化学习赋能医疗大模型:构建闭环检索-反馈-优化系统提升推理能力
本文探讨了人工智能技术在医疗领域的应用,特别是大型语言模型(LLMs)和医疗大模型(Medical Large Models)的发展。尽管这些模型在理解医学术语和与用户交互方面表现出色,但在检索外部信息和基于证据推理方面仍存在局限。文章指出,医疗大模型面临知识更新滞后、缺乏可追溯证据支持以及处理复杂问题能力不足等挑战。为应对这些问题,研究者提出结合检索增强生成(RAG)技术和强化学习(RL)的方法,通过闭环的“检索-反馈-优化”系统架构,提升模型的检索-推理能力。文章详细阐述了系统架构设计、关键实现步骤和组
2025-05-17 16:35:10
1358
30
原创 临床决策支持系统的提示工程优化路径深度解析
随着人工智能在医疗领域的快速发展,临床决策支持系统(CDSS)正从传统规则引擎向智能提示工程转变。本文探讨了CDSS提示工程的优化路径,重点分析了结构化提示的动态进化框架、多维推理增强策略、伦理约束的工程化实现及实时自适应机制。通过分层提示架构和概率评估优化算法,系统能够整合基础医学知识与最新研究成果,确保伦理合规性。多维推理增强策略如症状群模式识别和动态鉴别诊断生成,提升了系统处理复杂医疗场景的能力。伦理约束通过过度诊断防御系统和隐私保护架构实现,确保建议符合医学伦理原则。实时自适应机制如证据更新管道
2025-05-16 19:09:04
1292
27
原创 系统提示学习(System Prompt Learning)在医学编程中的初步分析与探索
实现的不是冰冷的"AI医生",而是人类医学智慧的量子跃迁——将数百年的医学知识积累转化为实时可调用的群体智能,使每个临床决策都凝聚着全人类的医疗智慧。
2025-05-16 18:45:54
1943
7
原创 医疗数据迁移质量与效率的深度研究:三维六阶框架与实践创新
随着医疗信息化的发展,医疗数据迁移成为医院系统升级、整合的关键环节。本研究针对医疗数据迁移的特殊挑战,构建了"三维六阶"迁移框架,从时间、空间和质量三个维度,将迁移过程划分为准备、评估、规划、执行、验证和优化六个阶段。该框架通过双活架构、渐进式迁移等策略,显著提升了迁移效率,将中断时间缩短至2小时以内,数据一致性达到RPO=0,用户体验NPS提升37分,迁移成本降低62%。同时,研究提出了医疗数据迁移质量评估模型(MDQM),已在国家医疗健康信息互联互通标准化成熟度测评中应用,为医疗数据
2025-05-15 16:55:19
1624
62
原创 医院网络安全托管服务(MSS)深度解读与实践路径
医疗行业在数智化转型中面临严峻的网络安全挑战,特别是勒索软件和第三方供应商引发的数据泄露事件频发,导致巨大的经济损失和运营中断。医疗数据的特殊性和高价值使其成为网络攻击的主要目标,而传统基础设施的不足和医院管理层对网络安全的忽视进一步加剧了这一问题。在此背景下,安全托管服务(MSS)应运而生,为医疗机构提供全天候的网络安全监控和管理服务。MSS分为远程和本地两种模式,医院可根据自身需求选择适合的服务类型。实施MSS前,医院需具备基本的网络和防护技术条件,并做好人员、管理、预算和数据等方面的准备工作,以确保服
2025-05-15 09:42:21
1114
34
原创 人工智能驱动的临床路径体系化解决方案与实施路径
本研究探讨了人工智能技术在临床路径管理中的应用,提出了一套智能化解决方案,旨在提升医疗质量管理的效率与规范性。传统临床路径管理面临路径设计僵化、执行依从性低等问题,人工智能通过知识图谱、动态路径生成引擎等技术,实现了路径的智能化优化与个性化定制。关键技术包括动态知识库构建、诊疗规则网络形成、历史数据分析、治疗方案转归预测等。此外,临床执行智能监控系统通过医嘱智能识别、实时决策支持等功能,确保路径的有效执行。该方案为医疗机构提供了系统性、可落地的智能化转型路径,推动医疗质量管理的智能化变革。
2025-05-14 19:56:55
1111
12
原创 OpenEvidence AI临床决策支持工具平台研究报告
OpenEvidence是一款专为医疗专业人士设计的临床决策支持平台,旨在通过整合多种临床计算器和人工智能技术,提升医生的诊疗效率和决策准确性。该平台内置了超过50种临床计算器,如CHA₂DS₂-VASc、SOFA和APACHE II等,帮助医生快速评估患者风险并优化治疗方案。OpenEvidence的独特之处在于其AI驱动的实时支持系统,能够结合最新医学文献和指南,提供个性化的临床建议。例如,在使用CHA₂DS₂-VASc评分时,平台不仅提供评分结果,还会推荐抗凝药物选择并提示出血风险评估。此外,平台支持
2025-05-14 16:41:30
1244
25
原创 《医院网络安全运营能力成熟度评估指南》(试行版)研究解读
随着信息化融入医院各领域全过程,信息系统成为医院管理与服务运行的必要支撑,同时面临外部攻击、内部漏洞及自然灾害等网络安全风险。2022年,卫生健康行业主管部门印发《医疗卫生机构网络安全管理办法》,提出构建“管理、技术、运营”三位一体的安全防护体系。各级医院启动安全防护体系建设,但因管理水平、人员能力和资金投入的差距,缺乏客观评价依据。
2025-05-13 09:46:33
1460
53
原创 逆强化学习IRL在医疗行为模式研究中的应用
逆强化学习(Inverse Reinforcement Learning, IRL)在医疗领域的应用展现出显著价值,特别是在脓毒症治疗策略优化和在线健康社区用户行为预测中。在脓毒症治疗中,IRL通过历史医疗数据自动学习奖励函数,帮助制定更有效的治疗策略,降低患者死亡率。研究提出的深度逆强化学习最小树模型(DIRL-MT)通过动态调整策略,减少了对医生经验的依赖。在在线健康社区中,IRL通过分析用户互动数据,揭示行为模式与健康支持的关联性,提升社区活跃度和患者参与度。这些应用展示了IRL在医疗领域中的潜力,为
2025-05-13 08:33:20
1161
29
原创 脑机接口重点产品发展路径分析:以四川省脑机接口及人机交互产业攻坚突破行动计划(2025-2030年)为例
四川省发布的《脑机接口及人机交互产业攻坚突破行动计划(2025-2030年)》旨在推动脑机接口技术的产业化发展,抢占全球科技竞争制高点。该计划从核心器件软件、关键仪器设备、重点系统装备和特色数字药物四个维度,制定了详细的技术路径和市场应用策略。核心器件软件方面,计划通过产业化推广、攻克突破和前瞻布局三个层次,推动高精度神经信号采集芯片、类脑解码芯片等关键技术的研发与应用。关键仪器设备方面,重点布局高密度脑电生理监测设备、闭环神经调控仪等,加速市场化推广和技术突破。四川省通过这一系列战略部署,旨在构建具有全球
2025-05-12 16:30:19
1605
20
原创 MCP地图业务与医院导航与叫号系统、微信排号系统的深度绑定分析
本研究深入分析了MCP地图业务与医院导航与叫号系统、微信排号系统的深度绑定关系,探讨了它们如何协同工作,共同提升医疗服务质量和患者满意度。
2025-05-12 11:29:35
873
14
原创 MCP Streamable HTTP 传输层的深度解析及实战分析
Streamable HTTP 传输层设计通过整合 HTTP/1.1、HTTP/2 和 SSE 协议,实现了动态协议协商、流式优先传输和智能背压控制。相较于传统的 HTTP+SSE 方案,Streamable HTTP 具备多路复用、流级流量控制等优势,支持更高效的半双工通信。其架构分为应用层、传输层和协议层,支持 JSON 事件和二进制帧的灵活处理。在 Spring AI Alibaba 实现中,通过 StreamableRequestAdapter 和 StreamableResponseWriter
2025-05-11 15:12:47
1103
63
原创 卫宁健康WiNGPT3.0与WiNEX Copilot 2.2:医疗AI创新的双轮驱动分析
卫宁健康在第29届中国医院信息网络大会(CHIMA2025)上发布了两款医疗AI新品:WiNGPT3.0医疗大模型与WiNEX Copilot 2.2智能助手。WiNGPT3.0通过注入临床思维,整合海量医学知识,具备多模态学习能力,显著提升了医疗诊断和治疗的智能化水平。WiNEX Copilot 2.2则通过“智能体+”增强技术,优化了医护智能助手的功能。这两款产品从基础模型构建和智能应用落地两个维度推动医疗智能化进程,体现了卫宁健康在医疗AI领域的技术实力和推动医疗行业数字化转型的决心。
2025-05-11 13:01:05
1412
36
原创 数智读书笔记系列032《统一星型模型--一种敏捷灵活的数据仓库和分析设计方法》
《统一星型模型——一种敏捷灵活的数据仓库和分析设计方法》由Bill Inmon和Francesco Puppini合著,旨在解决传统数据仓库设计中的局限性。统一星型模型(USS)结合了Bill Inmon的企业级数据仓库方法和Ralph Kimball的维度建模方法,通过引入Bridge表和中央表等创新机制,解决了数据丢失、Chasm陷阱、多事实查询等传统问题。USS模型不仅提高了查询效率和数据一致性,还增强了业务适应性和未来扩展能力。本书系统介绍了USS的设计方法和应用场景,适合数据架构师、商业智能开发人
2025-05-09 21:33:48
1959
34
原创 基于公共卫生大数据收集与智能整合AI平台构建测试:从概念到实践
随着医疗健康数据的爆发式增长,如何有效整合、分析和利用这些数据已成为公共卫生领域的重要挑战。传统方法往往难以应对数据的复杂性、多样性和海量性,而人工智能技术的迅猛发展为解决这些挑战提供了新的可能性。基于数据整合与公共卫生大数据的AI平台旨在构建一个全面的生态系统,通过整合各类医疗健康数据,利用先进的AI技术进行分析和预测,从而支持疾病爆发预测、健康风险评估、公共卫生策略制定和人群健康管理。这种平台不仅能够提高医疗健康服务的效率和质量,还能为公共卫生决策提供科学依据,最终实现改善人群健康的目标。
2025-05-09 19:17:24
1873
11
原创 数字孪生医疗:构建患者特异性数字孪生体路径探析
通过持续的技术创新和临床验证,数字孪生技术有望成为DCM个性化治疗的重要工具,为患者提供更精准、更个性化的医疗服务,改善患者的生活质量和预后。然而,这一目标的实现需要医疗专业人士、技术开发者和政策制定者的共同努力,需要跨学科的协作和创新,需要持续的技术发展和临床验证。然而,构建如此精确的模型需要复杂的算法和大量的计算资源,且模型的准确性和可靠性可能受到多种因素的影响,如数据质量、算法选择、参数设置等。为了提高数字孪生技术的准确性和效率,研究人员需要持续改进现有的算法和方法,开发新的技术和工具。
2025-05-08 21:11:22
1552
17
原创 Dynamic Causal Modeling在医疗AI领域的编程案例与应用研究
动态因果模型(Dynamic Causal Modeling, DCM)作为计算神经科学领域的革命性方法,正通过其独特的生物物理建模框架重塑医疗人工智能的技术范式。本文将系统性揭示DCM在医疗AI领域的工程化实现路径,构建从基础理论到临床落地的完整技术链条。
2025-05-08 09:07:00
1168
10
原创 脑图谱编程:技术突破与产业转化的系统性思考
脑图谱与脑机接口的融合正重塑人类认知边界。从DevCCF揭示的发育密码到MIT透明脑技术解码阿尔茨海默病,这些突破不仅是技术的飞跃,更是人类重新定义自身潜能的里程碑。未来十年,随着中国在超分辨成像设备、本土化数据库等领域的攻坚,以及全球伦理框架的完善,脑机接口将从医疗工具升华为认知自由的载体,开启"神经增强"的新纪元。
2025-05-07 10:27:40
1316
12
原创 医疗人工智能大模型中的关键能力:【中期训练】mid-training
泛化能力是衡量AI模型在训练数据分布之外的场景中保持稳定性能的关键指标。在医疗AI领域,这意味着模型需要能够从训练时接触的特定数据集扩展到更广泛、更多样化的医疗场景。例如,一个在CT影像上训练的模型应该能够准确处理MRI影像,或者从单一疾病诊断扩展到多病种识别。这种能力对于确保AI系统在真实医疗环境中的可靠性和有效性至关重要。泛化能力的实现依赖于多种技术手段。混合CNN-Transformer模型通过融合卷积神经网络的局部特征提取能力和变压器网络的全局关系建模能力,为泛化提供了架构基础。
2025-05-07 08:23:02
1211
46
原创 临床智能体AI与环境感知AI的融合:基于python的医疗自然语言处理深度分析
临床智能体AI(Clinical AI Agents)是指在临床环境中运行,能够感知医疗场景、理解患者需求、做出诊断决策并执行医疗相关任务的人工智能系统。感知能力:能够通过多种传感器和数据源获取医疗相关信息理解能力:能够理解复杂的医学知识和患者需求决策能力:能够基于医学知识和患者数据做出合理决策执行能力:能够采取行动或提供建议以改善医疗结果临床智能体AI在医疗环境中扮演着"数字化助手"的角色,帮助医生提高工作效率、减少错误,并为患者提供更个性化的医疗服务。
2025-05-06 12:00:52
1808
45
原创 人工智能在医疗运营编程中的应用综述
这些AI驱动的工具通过自然语言处理和机器学习技术,能够理解和回应患者的问题和需求,提供个性化的医疗建议和服务。总之,AI在欺诈检测和合规中的应用是医疗运营编程中的一个重要方向,通过提高欺诈检测、风险评估和合规审计的效率和准确性,医疗机构能够更有效地防范欺诈行为,确保合规运营,同时提高患者信任和机构声誉。总之,AI在供应链管理中的应用是医疗运营编程中的一个重要方向,通过提高需求预测、库存管理和供应商关系管理的效率和准确性,医院能够显著改善供应链管理的绩效,同时提高医疗服务的质量。
2025-05-06 09:50:37
506
8
原创 定位理论第一法则在医疗AI编程中的应用
在医疗AI领域,定位理论的应用尤为重要,尤其是在医疗AI编程中,如何通过科学的定位确保技术与医疗本质的深度协同,而非技术主导的颠覆,是一个需要深入探讨的课题。医疗AI的功能边界决定了其在医疗体系中的角色定位,是辅助医生还是替代医生,是专注于特定场景还是追求全科应用,这些问题直接关系到医疗AI的发展方向与价值实现。医疗AI的应用场景通常有特定的需求和限制,如准确性、实时性、可解释性等,这些需求和限制会影响数据的收集和处理,也会影响算法的设计和优化。提高医疗效率,如减少医生的工作负担,提高医疗服务的可及性;
2025-05-05 18:09:06
953
9
原创 探索神经符号系统:医疗AI的范式化进程分析
在医疗健康领域,人工智能技术正经历从纯神经网络向神经符号融合的范式转变。神经符号系统通过整合神经网络的感知能力与符号逻辑的推理能力,为医疗AI带来前所未有的精确性和可解释性。本报告深入探讨Python在神经符号医疗数据库中的应用,分析其在医学影像、疾病预测、个性化治疗等领域的突破,并展望未来发展方向。
2025-05-05 12:05:01
1059
22
原创 GPU集群训练经验评估框架:运营经理经验分析篇
本报告提出了一套全面的GPU集群训练经验评估框架,旨在客观、系统地评估候选人在GPU集群训练方面的实际经验和能力水平,而不仅仅是表面的工具熟悉度。配置管理是分布式训练代码中的重要功能,它管理与环境相关的参数,便于代码在不同环境中的部署和运行。有经验的候选人应该了解分布式训练的基本原理和常见问题,并且能够设计和实现高效的分布式训练框架。根据我们的研究,良好的可复现性的主要优势包括结果可重复、实验可验证和模型可复现等。错误处理是分布式训练代码中的重要功能,它处理训练过程中的各种错误,保证训练的稳定性和可靠性。
2025-05-04 21:33:47
1296
37
原创 个人健康中枢的多元化AI网络革新与精准健康路径探析
随着技术的不断更新和设备的多样化,如何确保不同厂商、不同型号的设备能够互联互通,如何确保不同技术平台之间的兼容性,成为个人健康中枢发展必须面对的挑战。通过分析用户的健康数据、生活习惯、遗传特征等多维度信息,AI算法可以识别出潜在的健康风险,预测疾病发展趋势,并提供个性化的健康干预建议。总体而言,精准健康路径的构建与优化需要多方面的技术支持,包括全面的健康数据采集、高效的健康数据分析、个性化的健康建议、高质量的远程医疗服务、严格的数据安全保障以及持续的系统优化等。针对这些挑战,未来的发展需要多方面的努力。
2025-05-04 11:54:37
1480
25
原创 个人健康中枢的多元化AI软件革新与精准健康路径探析
模型上下文协议(Model Context Protocol,MCP)是由Anthropic公司于2024年11月底推出的一种开放标准,旨在统一大模型与外部数据源和工具之间的通信协议。这一协议被形象地比喻为AI世界的"USB-C"接口,为AI模型连接各种数据源和工具提供了统一的方式[0][3MCP协议的核心目标是解决当前AI模型因数据孤岛限制而无法充分发挥潜力的难题,使AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口[0][1。
2025-05-02 08:39:05
1356
37
原创 个人健康中枢的多元化AI硬件革新与精准健康路径探析
在医疗信息化领域,个人健康中枢正经历着一场由硬件技术革新驱动的深刻变革。随着可穿戴设备、传感器技术和人工智能算法的快速发展,新一代健康监测硬件能够采集前所未有的多维度生物数据,并通过智能分析提供精准的健康建议。本文将深入探讨构成个人健康中枢的最新硬件技术,分析它们如何采集和处理多维生物数据,以及这些数据如何转化为个性化的健康指导方案,最终实现从被动治疗到主动预防的健康管理模式转变。
2025-05-02 07:47:46
1530
44
原创 电子病历高质量语料库构建方法与架构项目(环境聆听与自动化文档生成篇)
电子病历高质量语料库的构建是一个复杂而系统的工程,涉及数据收集、清洗、标注、验证等多个环节。在项目实施过程中,"环境聆听"和"自动化文档生成"是两个关键支撑要素,前者确保项目能够适应不断变化的技术和业务环境,后者则保障项目过程的可追溯性和知识沉淀。本文将系统阐述电子病历高质量语料库构建中的环境聆听策略和自动化文档生成方法,包括其重要性、实施步骤、技术架构和最佳实践。
2025-05-01 22:35:33
1836
25
原创 电子病历高质量语料库构建方法与架构项目(临床情景理解模块篇)
电子病历语料库的构建是医疗人工智能应用的基础工作,其质量直接关系到上层应用的效果和价值。高质量的电子病历语料库应当具备完整性、准确性、一致性和可用性等特点,能够真实反映临床医疗实践的全貌,并满足不同应用场景的需求。
2025-04-30 16:54:28
1552
9
原创 电子病历高质量语料库构建方法与架构项目(智能数据目录篇)
电子病历高质量语料库的构建是一个复杂而系统的工程,涉及数据收集、清洗、标注、验证等多个环节。这类语料库具有多重重要意义:在临床决策支持方面,它为智能诊断、治疗方案推荐提供数据基础;在医学研究加速方面,支持疾病模式发现、药物研发等研究工作[2海量高质量的电子病历数据蕴含有丰富真实可信的医疗知识和患者的健康信息,特别是风险因素信息,如"既往高血压病史1周,最高可达180/100 mmHg"、"糖尿病史10年"等[3构建高质量电子病历语料库需要充分考虑中文电子病历的特点。
2025-04-30 11:00:46
1436
5
原创 GTC Taipei 2025 医疗域前瞻:从AI代理到医疗生态,解码医疗健康与生命科学的未来图景
GTC Taipei 2025揭示的不仅是技术演进,更是医疗体系的哲学转型:从以医院为中心转向以患者为中心,从疾病治疗转向健康管理,从经验医学转向数据驱动。这一变革的核心在于。
2025-04-29 18:07:19
1699
50
原创 医疗生态全域智能化:从技术革新到价值重塑的深度探析
医疗人工智能正在经历从单一技术应用向全域生态系统演进的关键转折点。随着深度学习、自然语言处理和计算机视觉等技术的成熟,AI不再局限于辅助诊断等单一功能,而是逐渐渗透到医疗健康服务的全生命周期。从传统设备制造商向智慧医疗转型的东软医疗,正在构建"AI大模型+智能硬件+智能数据"三位一体的医疗科技新生态[0]。这一转型代表了医疗行业正加速迈向全域智能化时代,通过人工智能、物联网、区块链等技术的融合应用,重构医疗服务体系和价值创造模式。全域智能化医疗生态不仅关注技术层面的创新,更注重医疗流程的重塑、医疗资源的优化
2025-04-29 10:34:12
969
23
原创 2025医疗领域AI发展五大核心趋势与路线研究
在医疗大数据分析中,SQL(结构化查询语言)是一种常用的分析工具,但由于医疗数据的复杂性和特殊性,标准SQL函数往往无法满足特定的分析需求。因此,自定义生物SQL函数(UDFs,User-Defined Functions)成为了一个重要的发展方向,它允许医疗专业人员根据自己的需求定义特定的函数,从而降低非工程背景人员的使用门槛。自定义生物SQL函数是指由用户定义的函数,可以处理特定的生物医学数据和问题。例如,可以定义一个函数来计算特定基因的表达水平,或者计算两个蛋白质序列之间的相似性。
2025-04-28 11:06:19
1111
20
原创 预训练大模型与元训练大模型在医疗AI项目中的选型对比分析
例如,在医学影像分析中,可以使用预训练模型处理常见的影像特征,使用元训练模型处理罕见或新型的影像特征,结合两种模型的优势,提高影像分析的准确性和全面性。第五,模型的评估和验证将是未来的重要挑战。例如,可以将预训练模型作为元训练模型的基础,利用预训练模型获取的广泛知识基础,为元训练模型提供初始参数和知识表示,然后通过元学习使模型能够快速适应新任务。一种常见的架构是将预训练模型作为元训练模型的基础,利用预训练模型获取的广泛知识基础,为元训练模型提供初始参数和知识表示,然后通过元学习使模型能够快速适应新任务。
2025-04-28 09:18:52
1288
37
原创 数智读书笔记系列031《HIS内核设计之道——医院信息系统规划设计系统思维》书籍简介与读书笔记
需要确保整个方案符合医疗行业的特殊要求,比如电子病历的归档管理、符合HIPAA或等保2.0等法规,以及如何处理高并发场景,如挂号系统的秒杀问题,可能需要引入限流、熔断等微服务治理策略。> 安全与合规部分需要更详细的策略,比如如何实现RBAC(基于角色的访问控制),数据脱敏的具体技术(如Apache Obfuscator),以及符合等保2.0的具体措施,比如日志留存6个月、定期渗透测试等。还可以加入成本效益分析,比如微服务架构带来的TCO(总拥有成本)变化,或者具体案例的ROI(投资回报率)数据。
2025-04-27 09:25:21
1341
53
医疗智能体沟通方法论研究
2025-05-19
医院网络安全托管服务(MSS)实施指南2025版
2025-05-19
多模态思维链(Multimodal Chain of Thought, MCoT)六大技术支柱在医疗领域的应用
2025-04-14
Scaling and networking a modular photonic quantum computer
2025-03-02
英国乳腺癌AI诊断实验:最大规模应用深度剖析及医疗变革展望
2025-02-05
数智化时代医院临床试验人才培养的创新路径与实践探索.pdf
2024-12-25
《HIS 系统 SQL Server 数据库死锁的深度剖析与应对策略》.pdf
2024-12-23
人工智能领域计算断层成像技术研究最新进展综述
2024-12-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人