Allen_Lyb
电子工程副高、高级架构师、信息系统项目管理师。主持项目获国家三等奖/自治区一/二等奖各两次,论文(含会议)、软著、专利合计27篇/项,专业领域:数智化医院、量子智算项目及医疗机器人前沿。
展开
-
电子病历高质量语料库构建方法与架构项目(智能质控体系建设篇)
智能病历质控系统需要与医院的多个信息系统进行集成,如电子病历系统、HIS系统、LIS系统等,这些系统的接口、协议和数据格式可能不同,增加了集成的复杂性。例如,智能病历质控系统需要与医院现有的电子病历系统无缝对接,实现数据的实时采集和分析,但不同厂商的电子病历系统可能提供不同的接口和数据格式[跨机构和区域的协同质控将成为发展趋势。例如,以人工智能技术为核心,通过对病历语义的理解及诊疗路径的评估,查找缺陷内容,标识原因,不仅能从内容完整性、时效性等研判,也能对病历文书从术语规范性、数据一致性等方面进行质控[原创 2025-04-27 08:53:18 · 1303 阅读 · 34 评论 -
电子病历高质量语料库构建方法与架构项目(计划篇)
电子病历(EMR)作为医疗信息化的重要产物,包含了丰富的医疗信息和临床知识,是辅助临床决策、药物挖掘和医学研究的重要资源。然而,电子病历数据具有非结构化、噪声大、专业性强等特点,如何构建高质量电子病历语料库成为医疗自然语言处理领域的核心挑战。本全计划将从项目背景、方法论、技术架构、实施步骤、评估体系、应用场景和未来展望七个方面,全面阐述电子病历高质量语料库的构建方法与架构。电子病历文本挖掘已成为医疗人工智能研究的前沿领域,其核心价值在于从海量非结构化医疗文本中提取有价值的信息,支持临床决策、医学研究和医疗管原创 2025-04-24 08:35:56 · 1629 阅读 · 35 评论 -
电子病历高质量语料库构建方法与架构项目(提示词设计篇)
电子病历人工智能提示词工程是医疗AI应用中的关键技术环节,它直接影响大语言模型在医疗场景下的输出质量和可靠性。随着大语言模型在电子病历生成、质控、数据提取等领域的广泛应用,如何通过编程实现高效、精准的提示词工程成为医疗信息化建设的重要课题。本文将系统介绍电子病历AI提示词工程的编程实践方法,包括提示词设计原则、技术实现路径、应用场景分析以及未来发展趋势,为医疗信息化工作者提供全面的技术参考。原创 2025-04-25 08:09:22 · 1094 阅读 · 7 评论 -
电子病历高质量语料库构建方法与架构项目(数据遗忘篇)
AI背景下的医疗数据遗忘是指在AI生命周期的各个阶段(从原始数据集到派生模型参数)有组织地删除敏感医疗数据及其影响的过程,以防止未经授权的传播和推断。与传统数据删除仅移除文件不同,数据遗忘确保数据残迹不会在模型或日志中持续存在,从而实施全面的"遗忘"机制。这一概念不仅涵盖原始医疗数据的删除,还包括这些数据对训练模型产生的影响的消除,确保AI系统在决策过程中不再考虑已被遗忘的数据。原创 2025-04-25 09:19:46 · 1235 阅读 · 26 评论 -
新一代人工智能驱动医疗数智化:范式变革、实践方向及路径选择
未来的医疗数智化将不再是单一产品的替代过程,而是整个健康生态系统的重构。我们应坚持“以患者为中心、以医生为主导、以数据与人工智能为驱动”的核心理念,在监管引导、技术演进与产业落地之间寻求系统最优解[0][2随着医学大模型的进一步突破、国产设备生态的日趋完善,以及全球政策环境的趋同,中国医疗AI有望从“技术跟跑者”转变为“生态引领者”,实现科技创新与社会价值的双重跃迁[2][71. 普惠化:弥合全球医疗资源鸿沟人工智能将通过远程医疗、自动诊断和健康管理工具,为医疗资源匮乏的地区提供新的解决方案。原创 2025-04-23 08:57:22 · 1278 阅读 · 21 评论 -
人工智能在慢病管理中的具体应用全集:从技术落地到场景创新
这一成果的取得,得益于 AI 对居民血压数据的实时监测和分析,以及及时的干预措施。据统计,医疗支出下降了 18%,这主要是由于 AI 慢病管理系统实现了对慢病患者的早筛早诊早治,减少了并发症的发生,降低了医疗资源的浪费,从而减轻了患者和社会的医疗负担。医院信息系统(HIS)、电子病历(EMR)、区域卫生平台、可穿戴设备(如三诺血糖仪、华为手环)、第三方健康APP以及体检中心的数据往往采用不同的数据标准和格式(如HL7、FHIR、JSON、CSV等),且存储在相互隔离的系统中,形成典型的数据孤岛。原创 2025-04-21 09:46:21 · 920 阅读 · 27 评论 -
Model Context Protocol (MCP) 开放协议对医疗多模态数据整合的分析路径【附代码】
Model Context Protocol (MCP)是由Anthropic公司在2024年11月26日推出的开放协议,旨在解决人工智能助手无法访问外部数据源的问题,通过建立与外部资源的连接,使AI能够实时获取最新信息,从而提升其服务能力和响应准确性[1在医疗领域,MCP被形象地比喻为"AI领域的USB-C接口",为医疗AI模型与各种数据源和工具提供了统一连接方式[7MCP协议的核心价值在于其标准化接口和多模态协调能力。原创 2025-04-18 08:47:25 · 680 阅读 · 7 评论 -
MLA(Multi-Level Adaptive)融合算子全院级医疗编程探析(代码版)
MLA融合算子正推动医疗AI进入"微秒级响应"时代,但其深度应用需要临床专家与计算工程师的紧密协作。最新实践表明,在PET-CT联合诊断场景中,MLA可使端到端延迟从2.3秒降至0.7秒,同时保持99.6%的诊断一致性。该技术路线需要临床专家与系统工程师的深度协作,建议建立跨学科联合实验室推进医疗专用计算架构的持续创新。NVIDIA TensorCore优化。AMD CDNA架构优化。基于传播动力学的区域聚类。易感-感染-康复参数分解。ht−1 为隐藏状态,开发区域自适应归一化层。xt 为实时疫情指标。原创 2025-04-09 16:39:17 · 1019 阅读 · 20 评论 -
基于MCP协议的多模态思维链在医疗系统改造中的融合研究
fill:#333;color:#333;color:#333;fill:none;患者终端API网关影像分析服务文本解析服务知识图谱服务决策融合服务MCP追踪数据库.4f.4f.4ffill:#333;color:#333;color:#333;fill:none;正常异常边缘数据采集异常检测本地存储云端深度分析追踪数据库医生终端告警。原创 2025-04-15 10:00:47 · 837 阅读 · 21 评论 -
多模态思维链(Multimodal Chain of Thought, MCoT)六大技术支柱在医疗领域的应用
多模态思维链(Multimodal Chain of Thought, MCoT)通过整合文本、图像、视频等多模态数据,结合逻辑推理与深度学习技术,在医疗领域展现出强大的应用潜力。原创 2025-04-14 10:45:45 · 1170 阅读 · 9 评论 -
Cherrystudio+QwQ 32B+MCP安装部署全测试(2025年4月win11版)
因为上两次讲座我们已经安装过老版本的Cherry Studio,需要将Cherry Studio升级到最新版本(2025年4月12日版本是1.2.2,教学主机安装是1.0.0是不包含MCP服务协议内容的),所有当时看过讲座的各位朋友和同学需要同步进行升级,升级位置在设置-关于我们-关闭更新检测的开关打开,即可自动升级。通过 uv 和 Bun 的协同,Cherry Studio 实现了 MCP 服务的快速部署与高效执行,显著降低了开发者的环境配置负担。,我们点击后会看到下载配置项目,注意官方给了。原创 2025-04-12 19:41:58 · 1019 阅读 · 15 评论 -
MoE Align & Sort在医院AI医疗领域的前景分析(代码版)
MoE Align & Sort技术通过优化专家分配与计算并行性,在医疗领域的多模态数据处理、推理加速和任务协同中展现出独特价值。其开源算法(如AMD的实现)进一步降低了技术门槛,推动了资源受限场景(如基层医院、移动医疗设备)的应用。未来,结合轻量化设计(如Med-MoE的域特定调整)和领域知识嵌入,该技术有望在精准医疗、远程诊疗等场景中发挥更大作用。原创 2025-04-04 21:38:24 · 1174 阅读 · 23 评论 -
思维链编程模式下可视化医疗编程具体模块和流程架构分析(全架构与代码版)
随着人工智能在医疗领域的广泛应用,医疗AI思维链可视化编程工具应运而生,旨在为非技术背景的医疗从业者提供便捷的AI模型开发平台。这个工具通过直观的可视化界面,简化了AI模型的构建过程,帮助用户高效完成数据处理、模型训练和部署。通过模块化设计、医疗专用算子库与临床验证机制的结合,此类工具正在推动医疗AI从“技术实验”向“临床常规工具”转化。未来随着医疗信息化基础设施的完善,可视化编程将成为智慧医院建设的标准配置。预测故障类型(机械过热)原创 2025-04-03 19:31:20 · 1505 阅读 · 0 评论 -
思维森林理论(Cognitive Forest Theory)重构医疗信息系统集群路径探析
思维森林理论(Cognitive Forest Theory)作为华为诺亚方舟实验室提出的高阶推理框架,其核心是通过多路径并行推理和集体决1策机制解决复杂问题。原创 2025-04-06 10:07:11 · 1180 阅读 · 22 评论 -
DeepSeek R1在医院后勤故障报修工单自动化处理中的路径设计
扩展医院IT架构的设计和开发时,我们不仅要考虑现有技术的整合和支持,还需要确保与医院业务和法规的兼容性。以下是关于医院IT架构的扩展建议,涵盖了系统集成、医疗器械管理、高可用性保障等方面。医院IT架构设计需要综合考虑业务需求、法规要求和高可用性保障等因素。遵循HL7/FHIR标准进行系统对接,确保医疗设备工单符合《医疗器械临床使用管理办法》,并通过Kubernetes集群和异地容灾保障系统的高可用性,能够有效支持医院的数字化转型和高效运营。原创 2025-03-14 11:08:55 · 2275 阅读 · 0 评论 -
双模多态驱动:DeepSeek-V3-0324与DeepSeek-R1医疗领域应用比较分析与混合应用讨论
DeepSeek-V3-0324通过多Token预测、动态负载均衡和FP8混合精度训练等技术,显著提升了模型的实时性和计算效率,适合需要快速响应的医疗应用。而DeepSeek-R1 671B则通过云端异步处理和边缘云协同,增强了对复杂医疗任务的处理能力,但可能需要更高的硬件支持。原创 2025-04-02 05:16:11 · 869 阅读 · 36 评论 -
DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
【代码】DeepSeek R1-32B医疗大模型的完整微调实战指南(全码版)原创 2025-03-08 14:38:09 · 4053 阅读 · 0 评论 -
DeepSeek R1在医学领域的应用与技术分析(Discuss V1版)
DeepSeek R1作为一款高性能、低成本的国产开源大模型,正在深刻重塑医学软件工程的开发逻辑与应用场景。其技术特性,如混合专家架构(MoE)和参数高效微调(PEFT),与医疗行业的实际需求紧密结合,推动医疗AI从“技术驱动”向“场景驱动”转型。以下从具体业务领域需求出发,分析其应用逻辑与技术实现路径。原创 2025-03-10 21:27:42 · 1403 阅读 · 0 评论 -
动态路由机制MoE专家库架构在多医疗AI专家协同会诊中的应用探析
随着医疗人工智能技术的飞速进步,AI在医学领域的应用日益增多,尤其是在复杂疾病的诊断和治疗中,AI技术的应用带来了巨大的潜力。特别是动态路由机制混合专家(Mixture of Experts,MoE)架构,因其灵活、高效的特点,正逐渐成为实现多AI专家协同会诊的关键技术。通过将多个不同领域的专家模型动态地结合在一起,MoE架构不仅能够提高多学科诊断的准确性,还能显著提升医疗资源的利用效率。原创 2025-03-26 11:31:33 · 1428 阅读 · 45 评论 -
DeepSeek 开源周(2025/0224-0228)进度全分析:技术亮点、调用与编程及潜在影响
DeepSeek 开源周发布的五大项目,从底层计算内核到分布式文件系统,构建了一套针对大模型训练与推理的高性能工具链。原创 2025-02-28 10:47:36 · 1690 阅读 · 0 评论 -
DeepSeek 医疗大模型微调实战讨论版(第一部分)
DeepSeek 作为一款具有独特优势的大模型,在医疗领域展现出了巨大的应用潜力。它采用了先进的混合专家架构(MoE),能够根据输入数据的特性选择性激活部分专家,避免了不必要的计算,极大地提高了计算效率和模型精度。这种架构使得 DeepSeek 在处理大规模医疗数据时,能够更加高效地提取关键信息,为医疗决策提供有力支持。例如,在分析海量的医学影像数据时,DeepSeek 可以快速准确地识别出病变区域,为医生提供详细的诊断建议。原创 2025-03-07 18:46:46 · 1798 阅读 · 6 评论 -
Ollama+Cherrystudio+QwQ 32b部署本地私人问答知识库全测试(2025年3月win11版)
QwQ 32B凭借参数效率和本地部署优势,确实在技术性能上缩小了与DeepSeek R1的差距,但其生态成熟度和用户习惯的改变仍需时间。对于追求灵活性与隐私的用户,本地部署的QwQ 32B是理想选择;而DeepSeek R1则更适合追求“开箱即用”的场景。两者并非替代关系,而是不同场景下的互补方案。原创 2025-03-19 06:41:01 · 1020 阅读 · 62 评论 -
Scrum方法论指导下的Deepseek R1医疗AI部署开发
Scrum 起源于 20 世纪 90 年代,是一种旨在应对复杂项目开发的敏捷开发方法论。其诞生背景是传统软件开发模式在面对需求快速变化、技术迭代频繁的项目时,暴露出诸多局限性,如开发周期长、灵活性差、对市场变化响应迟缓等问题。原创 2025-02-22 16:55:58 · 1471 阅读 · 0 评论 -
思维链医疗编程方法论框架(Discuss V1版)
是一种结合结构化思维链(Chain of Thought)与医疗领域需求的系统化编程实践框架,旨在通过分步逻辑推理、知识整合与动态反馈,提升医疗软件/算法的开发效率、准确性与可解释性。该方法论的关键在于通过清晰的思维链分解医疗问题,并根据医疗场景需求,设计智能化的解决方案,最终实现高效、可解释且符合伦理与合规要求的医疗AI应用。原创 2025-03-13 08:58:35 · 1723 阅读 · 0 评论 -
MCP协议:通过标准化接口与动态协作提升医疗大模型集成能力
MCP(Model Context Protocol,模型上下文协议)是由Anthropic推出的一项开放协议,旨在通过标准化接口实现大型语言模型(LLM)与外部数据源、工具的无缝集成。随着AI技术的飞速发展,尤其是在医疗、金融、工业和教育等领域,大型语言模型(LLM)已经成为推动智能应用和自动化流程的重要力量。然而,当前的LLM在实际应用中的局限性逐渐显现,特别是在处理复杂的、动态变化的任务时,模型的上下文感知能力和任务协作效率往往受到制约。原创 2025-03-17 07:05:33 · 371 阅读 · 24 评论 -
DeepSeek R1与微信集成的医疗问答系统方案(路径分析篇一)
在分析DeepSeek R1与微信集成的医疗问答系统时,需从模型蒸馏、合成数据训练、监督技术优化、多机策略路径设计四个核心模块展开。DeepSeek-R1模型。分布式强化学习 RLHF。本地/混合云基础设施。混合监督-无监督训练。原创 2025-03-04 19:43:54 · 985 阅读 · 0 评论 -
Ollama+Cherrystudio+beg-m3+Deepseek R1 32b部署本地私人知识库(2025年2月win11版)
【5】维护知识库,第五步点击添加第六步输入标题,比如将我们今年写作的医疗开发方面文章以DOCX格式录入进去,第七步点击搜索知识库即可调出对话框搜索文章内的相关内容。【8】 在助手中就可以开始相应的AI问答应用,选择我们建立的学术研究者,本地库选择2025 CSDN论文,即可进行相应的问答。性能优势:均为高性能消费级CPU,具备强大的单核和多核处理能力,能够有效支持GPU的计算任务。【3】安装Cherrystudio,一站式安装,尽量安装在专门的大SSD硬盘上即可。原创 2025-02-24 11:43:01 · 2051 阅读 · 0 评论 -
DeepSeek R1模型医疗机构本地化部署评估分析(Discuss V1版上)
通过以上详细的参数分析和评估步骤,医疗机构可以准确确定DeepSeek R1模型的需求,并选择最适合的模型规模和硬件配置。此外,通过全面的预算评估、硬件资源规划和数据安全评估,可以确保模型的部署和应用过程顺利进行。下一步将是根据以上评估结果,制定具体的硬件采购计划和部署方案,以实现DeepSeek R1模型在医疗机构中的成功应用。原创 2025-03-05 17:34:05 · 1168 阅读 · 0 评论 -
DeepSeek R1模型医疗机构本地化部署评估分析(Discuss V1版下)
此外,通过持续的监控和优化,医疗机构可以不断提升Kubernetes集群的性能和服务质量,为医疗机构的数字化转型和智能化医疗服务提供坚实的技术基础。通过持续的优化和维护,医疗机构可以不断提升容器化部署方案的性能和服务质量,为医疗机构的数字化转型和智能化医疗服务提供坚实的技术基础。通过持续的监控和优化,医疗机构可以不断提升系统的性能和服务质量,为医疗机构的数字化转型和智能化医疗服务提供坚实的技术基础。以下是对高度可用性和容错能力的详细评估指标和评测方法,帮助医疗机构全面评估模型和服务的性能。原创 2025-03-05 17:39:01 · 971 阅读 · 0 评论 -
DeepSeek R1-7B 医疗大模型微调实战全流程分析(全码版)
本指南完整覆盖医疗大模型微调的15大核心环节,提供从数据准备到伦理合规的全链路解决方案。原创 2025-03-08 20:53:46 · 716 阅读 · 0 评论 -
Drools规则引擎在临床路径逻辑中的编程实例讨论汇总
Drools规则引擎不仅是技术工具,更是医疗流程标准化与智能化的核心推动力。其灵活性、自动化能力与安全机制,为临床路径的优化提供了从理论到落地的完整解决方案,助力医疗行业在合规前提下实现高效创新。原创 2025-03-11 10:28:10 · 1128 阅读 · 0 评论 -
DeepSeek R1与微信集成的医疗提示词工程改造方案(Discuss V1版)
DeepSeek R1是幻方量化旗下AI公司深度求索研发的推理模型,于2025年1月20日正式发布并同步开源模型权重。该模型采用强化学习进行后训练,在数学、代码和自然语言推理等复杂任务上表现卓越,性能可与OpenAI O1媲美。其研发过程中构建了智能训练场,通过动态生成题目和实时验证解题过程等方式,有效提升了模型推理能力。原创 2025-03-04 10:03:47 · 1700 阅读 · 0 评论